EUR 24,79
  • Tous les prix incluent la TVA.
Habituellement expédié sous 3 à 5 semaines.
Expédié et vendu par Amazon. Emballage cadeau disponible.
Quantité :1
101 Theory Drive: A Neuro... a été ajouté à votre Panier
Vous l'avez déjà ?
Repliez vers l'arrière Repliez vers l'avant
Ecoutez Lecture en cours... Interrompu   Vous écoutez un extrait de l'édition audio Audible
En savoir plus
Voir les 2 images

101 Theory Drive: A Neuroscientist's Quest for Memory (Anglais) MP3 CD – Livre audio, MP3 Audio, Version intégrale

Voir les formats et éditions Masquer les autres formats et éditions
Prix Amazon
Neuf à partir de Occasion à partir de
Format Kindle
"Veuillez réessayer"
MP3 CD, Livre audio, MP3 Audio, Version intégrale
"Veuillez réessayer"
EUR 24,79
EUR 16,94 EUR 26,00
--Ce texte fait référence à l'édition Broché.

Offres spéciales et liens associés

Descriptions du produit


Chapter One

The Talking Cure


Save for Lynch, Lynch Lab was empty the day I arrived, a clear blue winter morning in the last week of December 2004. Outside, the parking lot contained nothing but clean black asphalt and bright white lines. Inside, the double ranks of stainless-steel lab benches were bare and quiet. Much to Gary Lynch’s chagrin, every single one of the dozen or so scientists, students, and technicians who worked in the lab had gone on holiday. Lynch’s attitude toward other people’s vacations could most charitably be described as dim. He worked 365 days a year. Why couldn’t they? Especially now.

Scientists in Lynch’s lab at the University of California, Irvine, had recently developed a technique that Lynch, a neuroscientist who had been investigating the biochemistry of memory for more than thirty years, thought would allow researchers for the first time to visualize a trace of memory; that is, to see a map of the physical changes in the brain that occur when a memory is made. This was not an insignificant undertaking. For at least a century, scientists had been trying—and failing—to do exactly what Lynch thought his lab was on the verge of accomplishing: to teach an animal a new skill or experience; to, in other words, expose that animal’s brain to something in the exterior world, then look deeply enough into the close, dark, complicated space that is the mammalian brain and say, with certainty, “There! Right there! That’s it.” “The thing itself,” Lynch sometimes called it, making it sound like a rumored but never- quite-glimpsed spirit in the night.

Such a physical trace of memory is commonly called an engram. Karl Lashley, a famed American psychologist, had popularized the term in the mid-twentieth century and had devoted a significant portion of his career to pursuing it. His search had been exhaustive and, in the end, fruitless.

“This series of experiments has yielded a good bit of information about what and where the memory trace is not,” Lashley wrote. “It has discovered nothing directly of the real nature of the engram. I sometimes feel, in reviewing the evidence on the localization of the memory trace, that the necessary conclusion is that learning just is not possible. It is difficult to conceive of a mechanism that can satisfy the conditions set for it. Nevertheless, in spite of such evidence against it, learning sometimes does occur.”

The history of memory research since Lashley had been rife with heated disagreements about whether such a thing as an engram actually existed, about whether such a thing could actually be seen, about what such a thing would look like if it did exist and could be seen, about where it would be, and, especially, about what did or did not occur inside the brain cells, called neurons, that would cause such a thing to exist. If, that is, it did.

Of course, Lashley’s original impulse had been right. It had to be. If memory left no mark, then there could be no such thing as memory, no such thing as a personal past, no learning, no store of intimate and exotic knowledge. And if not that, then how to explain your sudden blinding reminiscence of that day in seventh grade when you dove headlong for the loose ball and crashed nose first into the bleachers and the pain was so sharp and bright you thought you had broken your brain, or the dense, long evening in the summer of the next year when you kissed Sharon Connelly, and she kissed back? If these things had truly happened, if you knew them to be true and had kept each in its own special place all that while, there was memory and it had only to be excavated from wherever it lay. Where was that place? What did it look like? Half a century after Lashley, no one knew.

Many of the experimental data marshaled from contemporary investigations of memory have been frail and indirect, some so slight that within the intimate, intensely competitive, and feud-ridden field of memory research, they are sarcastically dismissed as “investigator dependent,” meaning they are derived from experiments done in particular labs but that no one outside those labs could replicate and few believed. Even the best of the data—that is, that which came from experiments that can be reliably duplicated—is often so narrowly focused as to be nearly useless in building larger explanations of how memories might be laid down.

The experiments—the good and bad alike—used to generate all these results are, even when they work, seldom designed to test questions directly. They can’t be. This is more than anything a reflection of the fundamental difficulty of neuroscience. Lashley failed not because he was wrong, but because he had no good way to look for his answer. The secrets are buried too deeply to be uncovered through direct observation. They literally can’t be seen. The scale of the target environment—the brain—is forbidding. The three and one-half pounds of the average human brain are thought to contain something on the order of 100 billion neurons. The average neuron is far smaller than the thickness of a human hair, yet it contains many thousands of proteins, acting sometimes in unison, often in opposition, almost always in complicated combinations.

Almost all memory research—in Lashley’s day as now—is done by implication. For most of human history, memory investigators have been forced to stand outside the brain, trying to determine what goes on in the lost world inside. The tools long did not exist to look directly for the answers to researchers’ questions. Lynch was part of the generation of scientists that came after Lashley and for the first time moved the search into the complex machinery of the brain’s interior. His generation has advanced to the threshold of addressing some of the great fundamental questions of the human condition. The move from outside in has finally given them a fighting chance to uncover the molecular mechanisms of the brain—to learn what actually happens when people think and talk, how they learn and remember.


That first day, my conversation with Lynch went something like this:

ME: I’m interested in spending time in a laboratory, like yours, where the principal focus is the study of memory. I’d like to explain how memory functions and fails, and why, and use the work in the lab as a means to illustrate how we know what we know.

LYNCH: You’d be welcome to come here. This would actually be a propitious time to be in the lab.

ME: Why’s that?

LYNCH: Because we’re about to nail this mother****er to the door.

In the years after that meeting, I spent a great deal of time in Lynch’s lab. I spoke with the other scientists and students who worked there and observed their experiments; I read papers they and others published; and I learned how to perform some of the most rudimentary tasks of their basic experiments. But what I mostly did at Lynch Lab was talk to Lynch. Or, rather, I listened as Lynch expounded on mammalian biology and brain science. This was a generous undertaking on his part, as I had arrived at the lab largely ignorant of the field. Listening to him often entailed following swooping, exhilarating flights over time and intellectual terrain. Bear with me, he sometimes said, this might not seem connected to what we’ve been talking about, but it will circle back. Ten, twenty, or thirty minutes later—often after side trips to Planck’s constant, or Yankee Stadium, or Bismarck’s Germany, or his childhood backyard in Delaware—it did.

Lynch almost always spoke in such a way that his huge ambition, self- regard, and lack of pretense were vividly displayed. He was unreserved, witty, juvenile, insightful, and learned in ways that were surprising. His conversation rippled with allusion. He was more apt to quote Cormac McCarthy than Charles Darwin. That first claim, that he was “about to nail this motherfucker to the door,” was, in addition to being a status report on his research, a reference to Martin Luther (like Lynch, a conspirator against the establishment) nailing his indictment of the Roman Catholic Church to a cathedral door in sixteenth-century Germany. In subsequent talks, Lynch made similar on-the-fly references to, among many other things, left- handed relief pitchers, Moses, British naval history, the venture capital market, Kaiser Wilhelm II, Maxwell’s equations, the ur-city of Ur, Dylan, Kant, Chomsky, Bush, Tacitus (whom he compared, unfavorably, to Suetonius), Titian, field theory, drag racing, his father’s perpetual habit of calling him (intentionally) by the wrong name, his career as a gas jockey at an all-night service station, Pickett’s charge at Gettysburg, Caesar’s crossing of the Rubicon, and the search for the historical Jesus.

He was no less prolix in more formal settings. Eniko Kramar, a senior scientist in Lynch’s lab, recounted a talk he had given to a conference on schizophrenia. Lynch outlined an emerging hypothesis based mainly on novel experiments then being conducted in the lab, but his talk ranged all the way back to his graduate school studies at Princeton. He even showed a slide, without identifying its origin, from his 1968 dissertation. Besides the fact that work he had done thirty-five years earlier was still relevant, Kramar said, “the sweep and elegance of it was breathtaking.”

Lynch had moved his lab and office numerous times during his Irvine career, often as the result of some perceived, or real, slight. For a while his office was just a desk at the end of a communal hallway. The current lab was at 101 Theory Drive, in a tilt-up office park between a toll road and the University of California, Irvine, main campus. Lynch had ended up in the office park largely because everyone, including him, had concluded that all parties would be better served if there were some physical distance between Lynch and his university peers.

The university had put up the low-rise buildings in the 1990s in partnership with a developer, intending them to become a research nexus where academic and entrepreneurial talent could mix. It hadn’t quite worked out that way. The rents were so high few truly innovative companies could afford the space. Most of the tenants had little if anything to do with the university. En route to the office park’s resident Starbucks, Lynch often trailed whole convoys of shirttailed, triple-shot-latte addicts who spent their days and nights writing World of Warcraft code. That their dense, imaginary world was next door to a lab of neurophysiologists cutting up rat brains was utterly unknown to them. None of the work in the lab was apparent from the outside. The beige-on-beige, spray-on stucco building was indistinguishable from those in front of, beside, and behind it. More than once I walked into the wrong lobby.

The lab’s address on Theory Drive was a developer’s idea of a scientific street name. (The next left down the main road is Innovation Drive.) Lynch finds the name embarrassing. A kind of lunch- bucket anti-intellectualism prevails in academic biology, and Lynch was sometimes seen as guilty of its gravest sin—ambition. He mocks the criticism: “ ‘Oh a theory, another theory. That’s cute. Look, guys, Gary has another theory.’ ” For all his bombast and the resentments it provoked, Lynch was not eager to antagonize his many enemies heedlessly. He was respectful of the intellectual protocols that placed formal biological theory on a very high shelf he had yet to reach.

It is a mark of the difficulty of the life sciences—biology and its many complicated derivatives—that to call something a theory is not to slight but to honor it. Theory, the developmental biologist P. Z. Myers has written, is what biologists aspire to. Scattered across the globe, more than a dozen places proudly proclaim themselves home to the pursuit of theoretical physics. But as Lynch notes, it is no accident that there is “no Institute for Neuroscience Theory.” His protestations aside, he was almost constantly struggling for higher explanations, to make things cohere, to fit data into what the analytical philosopher Willard V. O. Quine called the web of science. In any event, insofar as the street was concerned, Lynch said, “I would have called it Hypothesis Drive.”

Hypotheses and theories, while related, are more different than alike. The hypothesis is the fundamental organizing principle in scientific research. Its “if this, then that” structure underlies almost all scientific investigation. If is the key word in that construction. An hypothesis is a set of questions. A theory is a set of proposed answers.

Imagine the brain as a huge storehouse with shelf after shelf, miles long, filled with a wild assortment of tableware—teacups, saucers, platters, ceramic bowls, crude pottery, fine china, simple dinner plates. The tableware may once have been stored tidily, but an earthquake has leveled the interior. The resulting huge pile of wrecked shelves and broken plates is the geography that a neuroscientist must navigate while trying to discern patterns and coherence in the brain.

An hypothesis is what someone, after surveying the wreckage of that pile of plates, might offer to begin putting the pieces back together. If all the blue pieces go together, then maybe we can rebuild the bowls. Frequently—always, really—the view of the pile inside the brain is incomplete. Pieces big and small are missing. Sometimes they sit out of sight for decades, even centuries, with no one willing or able to imagine their having a place in the reconstructed order. Perhaps they’re obscured by other pieces, or in another room, or lying in plain sight but are the wrong color. Who could possibly have imagined that brown shard would fit between the two blue? Lynch’s true gift is an ability to see how varied pieces might fit together, to intuit that somewhere in the room—under that blue-black pile, perhaps—there ought to be a piece of green ceramic.

From the Hardcover edition. --Ce texte fait référence à l'édition Broché .

Revue de presse

“Gets us a lot closer to the problem of how the brain records experience.”—The Los Angeles Times
“Crisp prose. . . . a cross between Hunter S. Thompson and E.O. Wilson or Stephen Jay Gould.”—Providence Journal

“A fascinating book."--Seattle Times 
“[A] compelling ride. Look for it. Remember it.”—The Oregonian

“A fascinating portrait of one brilliant, eccentric scientist and an insight into some of the groundbreaking science that seeks to explain memory.”—San Francisco Book Review
"A fun read about some fascinating neuroscience, and, even more importantly, provides a rare look into how science is really done." --Leonard Mlodinow, author of The Drunkard's Walk
“This is an engrossing story of science and the brilliant, flawed people who make it.”— Publishers Weekly
“A stirring account of how important scientific research gets done."— Kirkus
"Engrossing . . . a book about the truth, and the endless human struggle to find it."--Jonah Lehrer, author of How We Decide
"Thrilling . . . a story you won't forget." --David Eagleman, author of Sum

--Ce texte fait référence à l'édition Broché .

Aucun appareil Kindle n'est requis. Téléchargez l'une des applis Kindle gratuites et commencez à lire les livres Kindle sur votre smartphone, tablette ou ordinateur.

  • Apple
  • Android
  • Windows Phone
  • Android

Pour obtenir l'appli gratuite, saisissez votre adresse e-mail ou numéro de téléphone mobile.

Détails sur le produit

En savoir plus sur l'auteur

Découvrez des livres, informez-vous sur les écrivains, lisez des blogs d'auteurs et bien plus encore.

Dans ce livre

(En savoir plus)
Parcourir et rechercher une autre édition de ce livre.
Parcourir les pages échantillon
Couverture | Copyright | Table des matières | Extrait
Rechercher dans ce livre:

Commentaires en ligne

Il n'y a pas encore de commentaires clients sur
5 étoiles
4 étoiles
3 étoiles
2 étoiles
1 étoiles

Commentaires client les plus utiles sur (beta) HASH(0x91567570) étoiles sur 5 8 commentaires
18 internautes sur 18 ont trouvé ce commentaire utile 
HASH(0x9134d2ac) étoiles sur 5 Informative, insightful, and readable. 28 avril 2010
Par Mark J. Welch - Publié sur
Format: Relié Achat vérifié
I was intrigued by a brief mention of 101 Theory Drive: A Neuroscientist's Quest for Memory (by Terry McDermott) in a local bookstore's newspaper insert, which led me to search out some reviews online. Based mostly on one positive review (by B.T. Shaw, in The Oregonian), I bought the Kindle edition of the book from Amazon on the day it was released. After finishing the book, I was satisfied because I felt that I'd learned a lot about the biology behind memory; but I was also disappointed because the review had left me with higher expectations.

101 Theory Drive recounts two histories: first, a broad history of neuroscience and the understanding of how memory works; and second, a very specific "in-person" account of the last several years in the research lab of scientist Gary Lynch. I was impressed with the unique access that Mr. McDermott seemed to have to Lynch's lab over this period.

But after I finished McDermott's book, I visited a bookstore, hoping to read more (and specifically looking for some of the books listed in McDermott's annotated "Selected Bibliography"). What I found was a 1992 book that wasn't included in McDermott's bibliography; it was called In the Palaces of Memory: How We Build the Worlds Inside Our Heads, by George Johnson -- essentially recounting the same history of the same researcher's work two decades ago.

I feel somewhat cheated by Mr. McDermott's failure to mention this earlier in-depth reportage of the same researcher's work. I didn't buy Mr. Johnson's book, which I assumed would be quite outdated, especially considering the very recent developments mentioned in McDermott's book -- but the omission of any reference to that book seems quite irresponsible (even if McDermott believed that Johnson's book was poorly-written or hopelessly dated, he should not have implied that his own access to Lynch and his lab was so special).

Putting aside my offense at this journalistic lapse, I did enjoy reading McDermott's book, and I feel that I learned quite a lot. Perhaps the most important lesson was a clearer understanding of just how far we are from actually understanding how human memory works.

The subject of the book is the mechanical (chemical/biological) process by which "elements of memories" are actually "stored" at the cellular level. By the time I'd finished the book, I was surprised at how clearly I thought I understood this process (and I was impressed at the scientific accomplishment of identifying the process), even as I also recognized (with McDermott) that this discovery is only a tiny, tiny fragment of the knowledge required to actually understand how human memory actually works.

I was drawn to this book because I've recently experienced some strange cognitive and memory problems, which ultimately seem to be psychological (stress, anxiety, and depression). I wanted to learn a little bit more about how the brain works (and how the mind works, and how stress and anxiety impact the processes of memory and cognition). I achieved my goal -- I learned "a little bit more" (in fairness, perhaps a lot more) but this hasn't really brought me any closer to resolving my personal memory or cognition problems.

McDermott's book is well-written and engaging, and the scientific concepts are introduced gently -- slowly building some foundations and then adding on the specific concepts and discoveries emerging from Lynch's research. I found the book somewhat disjointed and sometimes repetitive, probably because the book was adapted and expanded from a series of articles McDermott wrote for the Los Angeles Times. (This was actually a surprisingly familiar experience for me. In 2002, I wrote a glowing positive review of another book adapted by a different reporter from another series of articles in the Los Angeles Times -- And Still We Rise, by Miles Corwin; that book helped inspire me to consider and pursue teaching as a career, though I eventually opted not to continue with that direction. McDermott's book isn't nearly as good as Corwin's.)

I recommend 101 Theory Drive to anyone with a serious interest in learning more about how memory works, and how scientific research is done. It's a good book.
4 internautes sur 4 ont trouvé ce commentaire utile 
HASH(0x9134d6d8) étoiles sur 5 Remember this one 14 juin 2010
Par Jay C. Smith - Publié sur
Format: Relié
This is an engaging journalistic account of the career of Gary Lynch, a neuroscientist who has sought to determine how memory works. Lynch believes that long-term potentiation (LTP)-- the construction of neural networks, made possible by structural changes in the neurons within those networks -- is the substrate of memory. His work has explored electrochemical processes in neurons to test and further elaborate that hypothesis.

The story is especially well communicated. Most readers will likely be able to follow along easily, gaining some understanding of neurological processes even if they approached the book knowing little previously. Terry McDermott does a fine job of conveying how scientific research really works. The tasks are often tedious: in this case they include thinly slicing tiny components of rat brains (hippocampuses), inserting electrodes into neurons, and microscopically searching for possible patterns that are frequently difficult to detect. A lot can go wrong and the results are only intermittently satisfying. Lynch himself does not like this day-to-day work, and he leaves it to the post-docs and grad students in his lab.

Lynch's role, rather, is to be the big thinker. He gives his researchers a general idea of what he is after and then gives them leash to figure it out, expecting long hours from all. McDermott humanizes the story with biographical background, extensive for Lynch, briefer for others in the lab.

It helps that that Lynch himself is a colorful character with his own language gifts, that he is often memorably quotable. For example, when he offers his opinions on the peer review process, about how science progresses, and about how reputations rise and fall, Lynch compares published scientists to "animals out in a herd, the wildebeests, they're running along, and a lion jumps up and takes out this guy named Clyde. [After that] they don't talk about Clyde anymore. It's just not good form to talk about him."

One could possibly fault 101 Theory Drive on a couple of relatively minor grounds. First, it tends to reinforce the stereotype that successful science depends on the mania and obsessions of assorted eccentrics.

Second, McDermott makes a good case for the importance of the work of Lynch Lab and clearly situates it within broader contexts of neuroscience research, but in the end he seems to have succumbed to Lynch's own hyperbole. He concludes that Lynch "had gone searching for memory and eventually found it." Well, not quite. McDermott should know better after he has repeatedly stressed the overwhelming complexity of the quest, informing us, just for starters, that there are about 40,000 proteins in every neuron. "Nobody has any idea what most of them are there for," he writes. "Even it were possible to know what each protein is, determining how they interact and what actions result from their interactions would be a forbidding undertaking."

I tapped my own memory, imperfect as it is (surely an abundance of failed LTP connections), to come up with a book to compare this one to. I thought of Tracy Kidder's The Soul of a New Machine (1981), another compelling tale of a team of high-intellect problem solvers driven by a challenging mission. I would place 101 Theory Drive in that same neighborhood (just substitute brain researchers for computer engineers).
3 internautes sur 3 ont trouvé ce commentaire utile 
HASH(0x9134d72c) étoiles sur 5 Doing Science 27 septembre 2010
Par angelhair - Publié sur
Format: Relié
I read this rather short (265 pgs.) book in three or four days looking forward to picking it up each day. The
science researcher, Gary Lynch, is not a team player preferring to go his own way, making enemies along the way.
This alone would have driven the story for me, but the book took me (a non scientist) inside his lab and showed me
how science was being done: sacrificing trained rats, decapitating them, slicing their brains, staining the slices and looking at them under $30,000. microscopes. Brilliant grad students under Lynch's supervision help advance the search for the elusive engram -that physical trace of memory.

Why, why, why couldn't the author include an index? Come on, lay readers can't retain some of these technical terms. He has an anemic glossary leaving out keys terms such as BDNF-Brain -derived Neurotrophic Factor but including for some reason these common terms: psychology, protein, and physiology.

Still, in spite of this, he presented the material so that I could grasp and enjoy most of it.
1 internautes sur 1 ont trouvé ce commentaire utile 
HASH(0x9134da74) étoiles sur 5 The history and perspective of one man's amazing career in trying to find memory 9 février 2011
Par Truth - Publié sur
Format: Relié
For a short little book it has more ups and downs for Lynch as a drama novel, except the highlights are relevant to all of humanities interest. Lynch's description of the politics and social aspects of his field are echo'ed from many greats in many different fields. I'm sure Grigori Perelman probably shares a lot of Lynch's grief. In the programming world, I also find people who recklessly always think they're very close to being complete, or severely underestimate the complexity of the task they have just planned, are the most likely in actually completing their task, even if it really takes them months. People who see the full complexity are often too overwhelmed to get started to begin with. Lynch admits keeping at the back of his mind the reality that everything he had anticipated could be completely wrong, but the fantastic attitude and enthusiasm he exhibits towards every small clue he finds should be and example for us all. The book has a lot of complex biology jargon, half of which I didn't understand. The good thing is he gives very elaborate metaphors, often very crude and funny, to explain the gist of what they mean. Being in my mid 20s in a career that requires constant memorization and thinking, I thought it was a good time to try to learn more about memory. I couldn't have found a better book. This was as entertaining as it was informative.
HASH(0x9134dcc0) étoiles sur 5 Fascinating look at real science 16 novembre 2014
Par Benjamin Zeigler - Publié sur
Format: Broché
I picked up 101 Theory Drive at random from a used book store, and I'm very glad I did. It's probably the best book I've read about the real workings of science and grants a fascinating look into an active, and chaotic, lab. The book focuses on the work of Gary Lynch and his team as they investigate the biological foundations of memory. The writer, Terry McDermott, takes advantage of his access to illuminate both the process of scientific research, and the psyche of Gary Lynch himself. My favorite part is that Terry did not skip over the details of the science involved, and I feel like I actually know a fair amount now about the current trentds in memory research. I highly recommend this book to anyone interested in neuroscience or the scientific process in general.
Ces commentaires ont-ils été utiles ? Dites-le-nous

Rechercher des articles similaires par rubrique


Souhaitez-vous compléter ou améliorer les informations sur ce produit ? Ou faire modifier les images?