ou
Identifiez-vous pour activer la commande 1-Click.
Plus de choix
Vous l'avez déjà ? Vendez votre exemplaire ici
Désolé, cet article n'est pas disponible en
Image non disponible pour la
couleur :
Image non disponible

 
Dites-le à l'éditeur :
J'aimerais lire ce livre sur Kindle !

Vous n'avez pas encore de Kindle ? Achetez-le ici ou téléchargez une application de lecture gratuite.

Advances in Elliptic Curve Cryptography [Anglais] [Broché]

Ian F. Blake , Gadiel Seroussi , Nigel P. Smart
5.0 étoiles sur 5  Voir tous les commentaires (1 commentaire client)
Prix : EUR 62,10 Livraison à EUR 0,01 En savoir plus.
  Tous les prix incluent la TVA
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
En stock.
Expédié et vendu par Amazon. Emballage cadeau disponible.

Formats

Prix Amazon Neuf à partir de Occasion à partir de
Broché EUR 54,05  
Broché, 25 avril 2005 EUR 62,10  

Description de l'ouvrage

25 avril 2005 London Mathematical Society Lecture Note Series (Livre 317)
Since the appearance of the authors' first volume on elliptic curve cryptography in 1999 there has been tremendous progress in the field. In some topics, particularly point counting, the progress has been spectacular. Other topics such as the Weil and Tate pairings have been applied in new and important ways to cryptographic protocols that hold great promise. Notions such as provable security, side channel analysis and the Weil descent technique have also grown in importance. This second volume addresses these advances and brings the reader up to date. Prominent contributors to the research literature in these areas have provided articles that reflect the current state of these important topics. They are divided into the areas of protocols, implementation techniques, mathematical foundations and pairing based cryptography. Each of the topics is presented in an accessible, coherent and consistent manner for a wide audience that will include mathematicians, computer scientists and engineers.

Offres spéciales et liens associés


Descriptions du produit

Revue de presse

'… gives a comprehensive explanation of elliptic curve cryptography. It is clearly written and is appropriate for both computer scientists and mathematicians interested in the field.' E. Schaefer, Niew Archief voor Wiskunde

'… a very well written description of the use of elliptic curves in public key cryptography.' Franck Leprévost, Zentralblatt für Mathematik

'An excellent new book on elliptic curve theory and practical implementation.' Dr Dobb's Journal Online

'… a good introduction to the mathematics behind the design of elliptic-curve cryptosystems and their implementation … this work is an important addition to the literature.' Jonathan Golan, Computing Reviews

'… written in a very readable form and thus can be consulted and used both by mathematicians and by anybody wishing to learn more about the mathematics behind the implementations of elliptic curve cryptosystems.' European Maths Society Journal --Ce texte fait référence à l'édition Broché .

Détails sur le produit

  • Broché: 298 pages
  • Editeur : Cambridge University Press (25 avril 2005)
  • Collection : London Mathematical Society Lecture Note Series
  • Langue : Anglais
  • ISBN-10: 052160415X
  • ISBN-13: 978-0521604154
  • Dimensions du produit: 23 x 15 x 1 cm
  • Moyenne des commentaires client : 5.0 étoiles sur 5  Voir tous les commentaires (1 commentaire client)
  • Classement des meilleures ventes d'Amazon: 928.374 en Livres anglais et étrangers (Voir les 100 premiers en Livres anglais et étrangers)
  • Table des matières complète
  •  Souhaitez-vous compléter ou améliorer les informations sur ce produit ? Ou faire modifier les images?


En savoir plus sur l'auteur

Découvrez des livres, informez-vous sur les écrivains, lisez des blogs d'auteurs et bien plus encore.

Dans ce livre (En savoir plus)
Parcourir les pages échantillon
Couverture | Copyright | Table des matières | Extrait | Index
Rechercher dans ce livre:

Vendre une version numérique de ce livre dans la boutique Kindle.

Si vous êtes un éditeur ou un auteur et que vous disposez des droits numériques sur un livre, vous pouvez vendre la version numérique du livre dans notre boutique Kindle. En savoir plus

Commentaires en ligne 

4 étoiles
0
3 étoiles
0
2 étoiles
0
1 étoiles
0
5.0 étoiles sur 5
5.0 étoiles sur 5
Commentaires client les plus utiles
5.0 étoiles sur 5 excellent livre 1 novembre 2001
Par Un client
Format:Broché
Survol complet et en detail des differentes implementations possibles en gf(P) et GF(2n).
Accessible aux amateurs eclairés (déconseillé aux débutants).
Avez-vous trouvé ce commentaire utile ?
Commentaires client les plus utiles sur Amazon.com (beta)
Amazon.com: 4.7 étoiles sur 5  3 commentaires
26 internautes sur 29 ont trouvé ce commentaire utile 
4.0 étoiles sur 5 Good compact book on elliptic curves in cryptography 29 juillet 2000
Par Dr. Lee D. Carlson - Publié sur Amazon.com
Format:Broché
This book gives a good summary of the current algorithms and methodologies employed in elliptic curve cryptography. The book is short (less than 200 pages), so most of the mathematical proofs of the main results are omitted. The authors instead concentrate on the mathematics needed to implement elliptic curve cryptography. The book is written for the reader with some experience in cryptography and one who has some background in the theory of elliptic curves. A reader coming to the field for the first time might find the reading difficult. The authors do give a brief summary in Chapter 1 on the idea of doing cryptography based on group theory. They then move on to discuss finite field arithmetic in Chapter 2. The reader is expected to know some of the basic notions of multiprecision arithmetic for integers. The authors choose to work with 2^16. Psuedocode is given for doing modular arithmetic with Montgomery arithmetic given special attention. The last section of the chapter gives a good summary of arithmetic in fields of characteristic 2. Chapter 3 discusses very compactly arithmetic in elliptic curves. This is where the reader should already have the background in the theory of elliptic curves, since the reading is very fast and formal. The authors do a good job of summarizing how modular polynomials come into play in elliptic curve cryptography and give some explicit examples of these polynomials. The most important chapter of the book is Chapter 4, where the authors give a discussion of how to implement elliptic curves efficiently in cryptosystems. This chapter is nicely written and pseudocode appears many times with lots of nice examples. This chapter serves as background for the next one on the discrete logarithm problem using elliptic curves over finite fields. The MOV attack, the anomalous attack, and the baby step/giant step methods are discussed very nicely. Random methods, such as the tame and wild kangaroo are discussed at the end of the chapter.
The next three chapters concentrate on how to actually generate elliptic curves for cryptosystems, with particular attention payed to the Schoof Algorithm. The chapter on Schoof's algorithm is more detailed than the rest of the chapters and this makes for better reading. The authors do discuss how to generate curves using complex multiplication although the discussion is somewhat hurried. The next chapter discusses how elliptic curves have been applied to other areas in cryptography, such as factoring, etc. A good discussion of the ECPP algorithm on proving primality ends the chapter. The authors end the chapter with a discussion of hyperelliptic cryptography. Anyone familiar with the theory of elliptic curves and how they are applied to cryptography will naturually ask if hyperelliptic curves have any advantages over the elliptic case. The authors never really address this explicity but do give examples on just what is involved in implementing hyperelliptic curves in cryptography. Overall a fine addition to the literature on elliptic curves in cryptography. One would hope that the authors would write a follow-up book on hyperelliptic curves and maybe on general algebraic curves and their possible use in this area.
3 internautes sur 5 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 The latest cutting edge research on Elliptic Curve Cryptography 26 septembre 2005
Par Stuart-Little - Publié sur Amazon.com
Format:Broché|Achat vérifié
First, the reviews dated below (July 25, 2002, July 29, 2000 [Lee Carlson] and January 31, 2000) are refering to Blake, Seroussi and Smart's first book: Elliptic Curves in Cryptography: London Mathematical Society Lecture Note Series 265, not the new book Advances in Elliptic Curve Cryptography, London Mathematical Society Lecture Note Series 317.

Contents of Advances in Elliptic Curve Cryptography, London Mathematical Society Lecture Note Series 317 (ISBN-10: 052160415X).

Chapter I: covers Elliptic Curve Based Protocols in the IEEE 1363 standard, ECDSA (EC Digital Signature Algorithm), ECDH (EC Diffie-Hellman) /ECMQV (EC MQV protocol of Law, Menezes, QU, Solinas and Vanstone) and ECIES (EC Integrated Encryption Scheme).

Chapter II: on the provable security of ECDSA.

Chapter III: proofs of security for ECIES,

Chapter IV: side-channel analysis.

Chapter V: defenses against side-analysis.

Chapter VI: advances in point counting. (This is an advanced chapter covering Takakazu Satoh's fast p-adic algorithm. Note, a very brief introduction to p-adic fields and extensions is given at the start of this chapter.)

Chapter VII: hyperelliptic curves and HCDLP.

Chapter VIII: weil descent attacks.

Chapter IX: pairings.

Chapter X: cryptography from pairings. (Highlight: covers Boneh and Franklin's identity based encryption (IBE) using Weil pairings.)

This book, published in April, 2005, brings the reader up to date with much of the latest research on Elliptic Curve Cryptography.

The algorithms are in the same format as in Elliptic Curves in Cryptography. Also, like in their first book, this book also does not always give proofs.

Highly recommended for advanced graduate students, applied mathematicians and computer scientists in the field of public key cryptography. The mathematics is more advanced than in their first book on Elliptic Curve Cryptography.
7 internautes sur 20 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 Good book 31 janvier 2000
Par Un client - Publié sur Amazon.com
Format:Broché
I think this is one of the best introductions to elliptic curve cryptosystems. This book have all the last algorithms in the field.
Ces commentaires ont-ils été utiles ?   Dites-le-nous
Rechercher des commentaires
Rechercher uniquement parmi les commentaires portant sur ce produit

Discussions entre clients

Le forum concernant ce produit
Discussion Réponses Message le plus récent
Pas de discussions pour l'instant

Posez des questions, partagez votre opinion, gagnez en compréhension
Démarrer une nouvelle discussion
Thème:
Première publication:
Aller s'identifier
 

Rechercher parmi les discussions des clients
Rechercher dans toutes les discussions Amazon
   


Rechercher des articles similaires par rubrique


Commentaires

Souhaitez-vous compléter ou améliorer les informations sur ce produit ? Ou faire modifier les images?