An Introduction To Quantum Field Theory et plus d'un million d'autres livres sont disponibles pour le Kindle d'Amazon. En savoir plus
EUR 57,82
  • Tous les prix incluent la TVA.
Il ne reste plus que 3 exemplaire(s) en stock (d'autres exemplaires sont en cours d'acheminement).
Expédié et vendu par Amazon.
Emballage cadeau disponible.
Quantité :1
An Introduction to Quantu... a été ajouté à votre Panier
Vous l'avez déjà ?
Repliez vers l'arrière Repliez vers l'avant
Ecoutez Lecture en cours... Interrompu   Vous écoutez un extrait de l'édition audio Audible
En savoir plus
Voir les 2 images

An Introduction to Quantum Field Theory (Anglais) Relié – 11 septembre 1995


Voir les 2 formats et éditions Masquer les autres formats et éditions
Prix Amazon Neuf à partir de Occasion à partir de
Format Kindle
"Veuillez réessayer"
Relié
"Veuillez réessayer"
EUR 57,82
EUR 52,88 EUR 99,99

Offres spéciales et liens associés


Produits fréquemment achetés ensemble

An Introduction to Quantum Field Theory + Lie Algebras In Particle Physics: from Isospin To Unified Theories (Frontiers in Physics)
Prix pour les deux : EUR 112,04

Acheter les articles sélectionnés ensemble

Descriptions du produit

Book by Peskin Michael E Schroeder Daniel V


Détails sur le produit

  • Relié: 864 pages
  • Editeur : Westview Press Inc (11 septembre 1995)
  • Collection : Frontiers in Physics
  • Langue : Anglais
  • ISBN-10: 0201503972
  • ISBN-13: 978-0201503975
  • Dimensions du produit: 3,8 x 16,5 x 24,1 cm
  • Moyenne des commentaires client : 4.8 étoiles sur 5  Voir tous les commentaires (4 commentaires client)
  • Classement des meilleures ventes d'Amazon: 14.414 en Livres anglais et étrangers (Voir les 100 premiers en Livres anglais et étrangers)
  •  Souhaitez-vous compléter ou améliorer les informations sur ce produit ? Ou faire modifier les images?


En savoir plus sur les auteurs

Découvrez des livres, informez-vous sur les écrivains, lisez des blogs d'auteurs et bien plus encore.

Commentaires en ligne

4.8 étoiles sur 5
5 étoiles
3
4 étoiles
1
3 étoiles
0
2 étoiles
0
1 étoiles
0
Voir les 4 commentaires client
Partagez votre opinion avec les autres clients

Commentaires client les plus utiles

Par GEBUHRER le 29 janvier 2015
Format: Relié Achat vérifié
Ce Livre n'est sûrement pas destiné aux "amateurs" comme je le suis moi-même ; l'introduction est trompeuse de ce point de vue ; de couverture à couverture,nous dit l'introduction ; c'est peut-être vrai mais non seulement requiert de très solides fondations mathématiques , je dirais master 1 , ce qui est sûrement normal mais une connaissance sans défaut des fondements de Mécanique Quantique ; une certaine familiarité avec la théorie de la perturbation en MQ n'est pas indispensable mais très utile et plus ou moins incontournable ; il est utile voire nécessaire d'avoir une connaissance non triviale de théorie des représentations des groupes de Lie ; ces prérequis étant supposés ,le livre est superbe mais ne se lit pas du tout comme un roman (!!!!) ; pour le débutant ou l'amateur et j'ajoute le débutant SERIEUX , le livre " QFT for the gifted amateur " est un compagnon indispensable ; l'exposition est séche ; les problémes en général sérieux voire difficiles ; en somme on ne peut pas dire du tout qu'l se suffit à lui-même et les auteurs ne font rien pour accompagner leur exposé de commentaires permettant au lecteur de reprendre son souffle .Pour cette raiosn 4 Etoiles et pas 5 !Je dois ajouter que la Bible Weinberg est si possible encore moins accessible; quel dommage !
OLIVIER GEBUHRER
Remarque sur ce commentaire Avez-vous trouvé ce commentaire utile ? Oui Non Commentaire en cours d'envoi...
Merci pour votre commentaire. Si ce commentaire est inapproprié, dites-le nous.
Désolé, nous n'avons pas réussi à enregistrer votre vote. Veuillez réessayer
1 internautes sur 1 ont trouvé ce commentaire utile  Par pschitt le 12 juillet 2011
Format: Relié
Clair et précis, ce livre est actuellement l'une des meilleures références de théorie quantique des champs. Il est assez complet et va au delà d'une simple introduction, mais toujours de façon très pédagogique.
Remarque sur ce commentaire Avez-vous trouvé ce commentaire utile ? Oui Non Commentaire en cours d'envoi...
Merci pour votre commentaire. Si ce commentaire est inapproprié, dites-le nous.
Désolé, nous n'avons pas réussi à enregistrer votre vote. Veuillez réessayer
Par Sergii Raspopov le 22 novembre 2014
Format: Relié Achat vérifié
It's the best book on QFT with lenty of examples and exercise. Very well organized. Some difficult topics are explained very good!
Remarque sur ce commentaire Avez-vous trouvé ce commentaire utile ? Oui Non Commentaire en cours d'envoi...
Merci pour votre commentaire. Si ce commentaire est inapproprié, dites-le nous.
Désolé, nous n'avons pas réussi à enregistrer votre vote. Veuillez réessayer
1 internautes sur 2 ont trouvé ce commentaire utile  Par M. Julien Riposo le 21 août 2011
Format: Relié
La théorie quantique des champs est un des domaines les plus difficiles à apprivoiser de la physique, pour trois raisons :
- il est une suite nécessaire de la mécanique quantique et de la relativité restreinte, et il est indispensable de bien maîtriser ces deux domaines d'abord,
- il peut aller très loin dans l'algèbre calculatoire, et les calculs peuvent assez rapidement devenir ultra-lourds,
- il est remplis de nouvelles méthodes, donc de nouveaux langages, et d'une vision formelle, dure à interpréter (notamment dans les domaines de recherche !), de percevoir la physique.

Ce livre, qui me semble être l'un des seuls à aider le débuttant en théorie des champs dans ces trois points, est une mascotte dans le monde. Chaque chapitre a sa grosse importance, et il faut suivre de livre de A à Z. Le travail du cours donne ainsi des résultats de compréhension assez surprennants dans la mesure où on a la sensation de satisfaction intellectuelle. Par exemple, la partie sur les diagrammes de Feynmann est très abordable et pédagogique, sachant que de petits résumés sont proposés après chaque point où il est question de mémoriser de gros concepts, et ceci - c'est là le point fort du livre - assez efficacement.
Il est aussi à noter qu'il est orienté plutôt physique des particules, et cette orientation se fait ressentir au fur et à mesure que l'on progresse dans les chapitres.

Un dernier point, sûrement pas négligeable, concerne les exercices.
Lire la suite ›
1 commentaire Avez-vous trouvé ce commentaire utile ? Oui Non Commentaire en cours d'envoi...
Merci pour votre commentaire. Si ce commentaire est inapproprié, dites-le nous.
Désolé, nous n'avons pas réussi à enregistrer votre vote. Veuillez réessayer

Commentaires client les plus utiles sur Amazon.com (beta)

Amazon.com: 54 commentaires
64 internautes sur 65 ont trouvé ce commentaire utile 
A great book; better when supplemented 16 décembre 2001
Par "jackaroe" - Publié sur Amazon.com
Format: Relié
This is a difficult book to review. That a detailed study of several textbooks is needed for a thorough introduction to QFT is a well-known maxim among students of the subject. Every QFT text excels in some areas and struggles in others, and Peskin and Schroeder's book (P&S) is no exception. P&S chooses to emphasize performing calculations in the Standard Model (SM), and the chapters pertaining to this topic are excellent. Chapters 5 and 6, covering tree and one-loop calculations in QED, are invaluable, as are chapters 20 and 21, which detail the electroweak theory.
Several of the formal aspects of QFT are shunted in P&S, as must something be neglected in every QFT text that is stable against gravitational collapse. The general representation theory of the Lorentz group is the most glaring omission in P&S. Chapter 1 of Ramond's "Field Theory: A Modern Primer" treats this topic quite well. The LSZ reduction formulae are derived and discussed more clearly in Pokorski's "Gauge Field Theories", as are BRST symmetry and free field theory. For those interested in undertaking detailed phenomenological studies of the SM or some extension thereof, Vernon Barger's "Collider Physics" is also recommended.
Despite its shortcomings, P&S remains the best QFT reference currently available. It's the book I turn to first when confronted in research papers with field theoretic puzzle that I just can't crack. If you buy only one QFT text, buy P&S.
45 internautes sur 46 ont trouvé ce commentaire utile 
It is sad that we don't have a better book out there... 28 mai 2006
Par PT - Publié sur Amazon.com
Format: Relié
The main problem of this book: what exactly is it supposed to be?

If it is an introduction, then the opening chapters are written at a level too sophisticated that an average first-time student can't handle.

If it aims to be a "bible" of the subject, then the later chapters are far too technical, loaded with only Feynman diagram calculations for standard model. Not being a phenomenologist, I personally have very little interest in all the technical detail, and apparently several other reviewers share my view here.

Now let me gives some examples to support my claim.

First, C, P and T symmetries are introduced very early on (right after Dirac spinor), and in a very formal way. Yes, they logically belong there, but in an "introduction" of the subject you don't throw out an isolated topic like this which you don't make use of in the following few hundred pages.

The part on cannonical quantization is written at a very fast pace. A complex scalar field is probably the first model you can construct with charged particles. And guess what kind of treatment it receives in this book? Not a single word in the main text. The problem 2 of that chapter essentially asks you to work out the content of this model with few hints given. If you have troble working it out, which is not uncommon for a first-timer, then you won't see the logic behind the decomposition of a complex Dirac field either. This is done in the following chapter, with no explaination.

Like the charged scalar field example, some important pieces of knowledge are hidden only in the exercises. So if you treat these high-power opening chapters as your bible-type reference, you will often end up in the frustrating situation that the book tells you to work out by yourself what you are seeking in the first place.

Now get to the later parts of the book. As I mentioned above, the second half of the book is almost conceptually too simple, overloaded with technical details.

This downfall begins around the renormalization group. On the back of this book, this Prof. Micheal Dine is qouted: "it is the only field theory text with a thoroughly modern, Wilsonian treatment of renormalization". The connection between the Wilsonian idea and dimensional regularization/renormalization scale is shaky at best. You read the text, and are left puzzled at the magic: how does a cut-off scale become some (much lower) arbitrary momentum scale? No explaination. The Wilsonian theory is completely isolated and have little connection with the rest of the renormalization section.

Furthermore, the book does not do a very good job on Lie algebra and non-abilien Lie groups. I mean, come on, if this is an "introduction" type of book, make it more readable. If this is a "bible" type of book, make it more comprehensive.

Having voiced all my bad opinions, I have to admit that the book has its merit. Bottom line is, this is a book written by phenomenologists for phenomenologists. If you view it from such an angle, it is not too badly written after all, and does cover most of the important topics a phnomenologist would want to know. But you may want to start from a more accessible text such as Ryder.

If you are a theorist, but not a phenomenologist, then, well, let's say the ability of getting through the first part perfectly is the minimum requirement for your research.

If you are an experimentalist, don't bother.
49 internautes sur 51 ont trouvé ce commentaire utile 
Good introduction to Feynman diagrams 25 mars 1998
Par Paul Shocklee - Publié sur Amazon.com
Format: Relié
I worked through the most of this book in explicit detail (the only way to get the full benefit, in my humble opinion), and, while it was very good at teaching the methods for deriving and computing Feynman diagrams, it often sacrifices pedagogy for explicit calculation. For instance, while there is a brief discussion of representations of the Lorentz group, the book gives no indication of how to construct and work with fields of higher spin. Also, I found their discussion of the LSZ reduction formulae rather impenetrable. (Their discussion of BRST symmetry, in contrast, is very readable and easily understood.) So, while I would recommend this book to anyone who wants to learn to do calculations in quantum field theory, it is imperative that they supplement this book with other sources that treat important topics, like the CPT theorem, general representation theory, and non-perturbative phenomena (which are barely mentioned here), in detail. (Also, there are a rather large number of unfortunate typos in the first edition...)
51 internautes sur 57 ont trouvé ce commentaire utile 
Promotes physical insight and understanding...not formalism 29 juillet 2001
Par Dr. Lee D. Carlson - Publié sur Amazon.com
Format: Relié
The authors give an excellent overview of the physical concepts and computational aspects of quantum field theory. They stress the situation behind the subject, and endeavor to remain as concrete as possible. Abstract mathematical constructions are left to more advanced texts in quantum field theory. The authors characterize their book as an updating of the two volume set of Bjorken and Drell.
The main emphasis of the book is on quantum electrodynamics (QED), the most successful of quantum field theories. The representation and analysis of the physical processes of QED is done via Feynman diagrams, with electron-positron annihilation leading off the discussion. Recognizing that the exact expression for the amplitude of this process is not known, perturbation theory is used to give an approximate representation for it via an infinite series with each term involving successively higher powers of the strength of the coupling between the electrons and photons (i.e. the charge). Each term is represented as a Feynman diagram. This is followed by a discussion of the quantum field theory of the Klein-Gordon field. The authors give one of the best explanations in the literature of why one must deal with the quantization of fields and not particles, the most important one being causality. Canoncial quantization is employed and the Feynman propagator for the Klein-Gordon field is derived. The Dirac field is also quantized using the canonical formalism. The authors show that Klein-Gordon fields obey Bose-Einstein statistics and Dirac fields obey Fermi-Dirac statistics. The all-important Wick's theorem is proven and higher-order Feynman diagrams are discussed. Most importantly, the authors show how to connect these results to experiment via the calculation of cross sections and decay rates. This entails the computation of the S-matrix elements from Feynman diagrams. The authors are very detailed in their elucication of the discussion, and those who have done these calculations know that it is great fun to do so. In addition, these "bread-and-butter" calculations give quantum field theory its ultimate justification in the modern particle accelerator. The discussion on radiative corrections is especially well-written, particularly the section on infrared divergences.
The authors do not entirely neglect the more formal aspects behind quantum field theory, and spend some time discussion renormalization and the amazing Ward-Takahashi identity. This important identity gives one further confidence in the consistency of QED in that is shows that timelike and longitudinal photons can be neglected in the actual calculations. The process of renormalization has been viewed with suspicion by mathematicians, but it has been given a firmer foundation recently using, interestingly, mostly 19th century mathematics. The authors discuss functional methods, and give an example of its use by calculating the photon propagotor. Viewing this as a constrained problem because of gauge invariance they use the Faddeev-Popov gauge fixing condition to obtain the correct results. In addition, they derive the important Schwinger-Dyson equations for QED using functional methods.
Effective field theories are also introduced in the book, with an explicit calculation of the effective action. The authors show the important connection between continuous symmetries and the existence of massless particles (Goldstone's theorem). Their discussion of the renormalization group is very understandable, and they motivate the subject well, by asking why the loop integrals over virtual-particle momenta are always dominated by values on the order of the finite external momenta.
Non-Abelian gauge theories are given a thorough treatment and Wilson loops are introduced as a comparator between gauge transformations at different spacetime points. The quantization of these theories is again done by viewing the quantization problem as a constrained problem, and the famous "Lagrange multlipiers", the Faddeev-Popov ghosts, are introduced. The authors show in detail how their introduction allows the correct Feynman rules to be produced, by showing that the unphysical timelike and longitudinal polarization states of the gauge bosons are cancelled by these fields. The BRST symmetry is discussed as a formal device to to this cancellation. The omit though how the Ward identities are derived from BRST symmetry.
The authors give the best explanation in the literature of asymptotic freedom by showing the effect of vacuum fluctuations on the Coulomb field of a SU(2) gauge theory.
The important operator product expansion is treated in the context of the Callan-Symanzik equation in quantum chromodynamics. It is applied to the deep inelastic scattering and electron-positron annihilation. Dispersion relations make their appearance here.
The authors also discuss anomalies and motivate the subject by analyzing the axial current in two-dimensional massless QED. The axial current is shown not to be conserved in the presence of an electromagnetic field, and they conclude that gauge invariance and conservation of axial currents in this theory cannot both be simultaneously satisfied. This is generalized to axial currents in four dimensions and the authors derive the famous Adler-Bell-Jackiw anomalies. The implications of anomalies for gauge theories are discussed along with observable consequencies.
The (mysterious) Higgs mechanism is also discussed and compared to the situation in superconductivity. To view it in terms of superconductivity I think gives it the most plausible and intuitive justification. Understanding the Higgs mechanism is a usual stumbling-block for newcomers to gauge theories, and the authors do a fair job here. The quantization of spontaneously broken gauge theories is then carried out, with emphasis on the Goldstone boson equivalence theorem. A brief discussion of the future of quantum field theory ends the book.
When reading this book, and others on quantum field theory, I am always amazed at the degree to which it works, and its elegance, despite the fact that it really is a collection of ad hoc strategies and sophisticated guesswork. One gets the impression that there is something profound behind the scenes, still waiting to be discovered, and which will be able to shed light on the major unsolved problem of quantum field theory: the existence of a bound state.
21 internautes sur 22 ont trouvé ce commentaire utile 
A major step since Bjorken/Drell 5 octobre 1999
Par Un client - Publié sur Amazon.com
Format: Relié
The book of Peskin/Schroeder represents in my view a major stepforward since Bjorken/Drell. Not only do they cover everything in moredetails but their book also reflect the considerable advancement and refinement of quantum field theory. In any case, one should still start with Bjorken/Drell in order to get a good understanding before moving over to Peskin/Schroeder. This is not to say that Peskin/Schroeder is difficult to read, quite the contrary, but the physics embedded in the mathematics will be much easier to master. The problems are very well tied to each chapter and are also clearly written for a further and deeper understanding of the subjects. Also, Peskin/Schroeder cover quite a bit in quantum field theory and one will never have the feeling that something was left out. This also makes it an excellent reference book as well.
Ces commentaires ont-ils été utiles ? Dites-le-nous


Commentaires

Souhaitez-vous compléter ou améliorer les informations sur ce produit ? Ou faire modifier les images?