ou
Identifiez-vous pour activer la commande 1-Click.
ou
en essayant gratuitement Amazon Premium pendant 30 jours. Votre inscription aura lieu lors du passage de la commande. En savoir plus.
Amazon Rachète votre article
Recevez un chèque-cadeau de EUR 16,00
Amazon Rachète cet article
Plus de choix
Vous l'avez déjà ? Vendez votre exemplaire ici
Désolé, cet article n'est pas disponible en
Image non disponible pour la
couleur :
Image non disponible

 
Dites-le à l'éditeur :
J'aimerais lire ce livre sur Kindle !

Vous n'avez pas encore de Kindle ? Achetez-le ici ou téléchargez une application de lecture gratuite.

Apprentissage statistique [Broché]

Gérard Dreyfus , Jean-Marc Martinez , Manuel Samuelides , Collectif

Prix : EUR 52,00 Livraison à EUR 0,01 En savoir plus.
  Tous les prix incluent la TVA
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
Il ne reste plus que 2 exemplaire(s) en stock (d'autres exemplaires sont en cours d'acheminement).
Expédié et vendu par Amazon. Emballage cadeau disponible.
Voulez-vous le faire livrer le vendredi 3 octobre ? Choisissez la livraison en 1 jour ouvré sur votre bon de commande. En savoir plus.
Vendez cet article - Prix de rachat jusqu'à EUR 16,00
Vendez Apprentissage statistique contre un chèque-cadeau d'une valeur pouvant aller jusqu'à EUR 16,00, que vous pourrez ensuite utiliser sur tout le site Amazon.fr. Les valeurs de rachat peuvent varier (voir les critères d'éligibilité des produits). En savoir plus sur notre programme de reprise Amazon Rachète.

Description de l'ouvrage

2 octobre 2008 Algorithmes
L'apprentissage statistique permet la mise au point de modèles de données et de processus lorsque la formalisation de règles explicites serait impossible: reconnaissance de formes ou de signaux, prévision, fouille de données, prise de décision en environnement complexe et évolutif. Ses applications sont multiples dans le monde de la production industrielle (robotique, maintenance préventive, développement de capteurs virtuels, planification d'expériences, aide à la conception de produits), dans le domaine de la biologie et de la santé (aide au diagnostic, aide à la découverte de médicaments, bio-informatique), en télécommunications, en marketing et finance, et dans bien d'autres domaines. Sans omettre de rappeler les fondements théoriques de l'apprentissage statistique, cet ouvrage offre de solides bases méthodologiques à tout ingénieur ou chercheur soucieux d'exploiter ses données. Il en présente les algorithmes les plus couramment utilisés - réseaux de neurones, cartes topologiques, machines à vecteurs supports, modèles de Markov cachés - à l'aide d'exemples et d'études de cas industriels, financiers ou bancaires. Cet ouvrage est la mise à jour du livre Réseaux de neurones - Méthodologie et applications. A qui s'adresse ce livre ? Aux ingénieurs, chercheurs et décideurs ayant à résoudre des problèmes de modélisation, de reconnaissance, de prévision, de commande, etc. Aux étudiants et élèves ingénieurs des disciplines scientifiques et économiques, et à leurs enseignants.

Offres spéciales et liens associés


Produits fréquemment achetés ensemble

Apprentissage statistique + Apprentissage artificiel - Concepts et algorithmes + Réseaux bayésiens
Acheter les articles sélectionnés ensemble


Descriptions du produit

Biographie de l'auteur

Gérard Dreyfus dirige le laboratoire d'électronique de l'École supérieure de physique et de chimie industrielles (ESPCI-ParisTech) où il enseigne notamment les méthodes de modélisation par apprentissage. il dispense des formations continues à l'usage des ingénieurs dans ce domaine. Manuel Samuelides dirige le département de mathématiques appliquées de l'ENSAE (Supaéro); il y enseigne les probabilités, l'optimisation et les techniques probabilistes de l'apprentissage. Il effectue des recherches au département de traitement de l'information et modélisation de l'ONERA. Jean-Marc Martinez est expert senior et enseignant-chercheur au Commissariat à l'Énergie Atomique dans le domaine de l'apprentissage statistique et de la modélisation des incertitudes en simulation numérique. Il développe et applique ces méthodes au CEA et les enseigne dans diverses universités et écoles. Mirta B. Gordon, physicienne, directrice de recherches au CNRS, est responsable de l'équipe "Apprentissage: modèles et algorithmes" (AMA) au sein du laboratoire TIMC-IMAG (Grenoble). Elle effectue des recherches sur la modélisation des systèmes complexes adaptatifs, et sur la théorie et les algorithmes d'apprentissage. Elle enseigne ces sujets dans différentes écoles doctorales. Fouad Badran, professeur au CNAM, y enseigne les réseaux de neurones. Sylvia Thiria, professeur à l'université de Versailles Saint-Quentin-en-Yvelines, effectue des recherches sur la modélisation neuronale et sur ses applications, notamment à la géophysique, au laboratoire d'océanographie dynamique et de climatologie (LODYC).

Détails sur le produit


En savoir plus sur les auteurs

Découvrez des livres, informez-vous sur les écrivains, lisez des blogs d'auteurs et bien plus encore.

Dans ce livre (En savoir plus)
Parcourir les pages échantillon
Couverture | Copyright | Table des matières | Extrait | Index | Quatrième de couverture
Rechercher dans ce livre:

Vendre une version numérique de ce livre dans la boutique Kindle.

Si vous êtes un éditeur ou un auteur et que vous disposez des droits numériques sur un livre, vous pouvez vendre la version numérique du livre dans notre boutique Kindle. En savoir plus

Quels sont les autres articles que les clients achètent après avoir regardé cet article?


Commentaires en ligne 

Il n'y a pour l'instant aucun commentaire client.
5 étoiles
4 étoiles
3 étoiles
2 étoiles
1 étoiles

Discussions entre clients

Le forum concernant ce produit
Discussion Réponses Message le plus récent
Pas de discussions pour l'instant

Posez des questions, partagez votre opinion, gagnez en compréhension
Démarrer une nouvelle discussion
Thème:
Première publication:
Aller s'identifier
 

Rechercher parmi les discussions des clients
Rechercher dans toutes les discussions Amazon
   


Rechercher des articles similaires par rubrique


Commentaires

Souhaitez-vous compléter ou améliorer les informations sur ce produit ? Ou faire modifier les images?