Commencez à lire Data Just Right sur votre Kindle dans moins d'une minute. Vous n'avez pas encore de Kindle ? Achetez-le ici Ou commencez à lire dès maintenant avec l'une de nos applications de lecture Kindle gratuites.

Envoyer sur votre Kindle ou un autre appareil

 
 
 

Essai gratuit

Découvrez gratuitement un extrait de ce titre

Envoyer sur votre Kindle ou un autre appareil

Désolé, cet article n'est pas disponible en
Image non disponible pour la
couleur :
Image non disponible
 

Data Just Right: Introduction to Large-Scale Data & Analytics [Format Kindle]

Michael Manoochehri

Prix conseillé : EUR 22,14 De quoi s'agit-il ?
Prix éditeur - format imprimé : EUR 36,53
Prix Kindle : EUR 15,50 TTC & envoi gratuit via réseau sans fil par Amazon Whispernet
Économisez : EUR 21,03 (58%)

App de lecture Kindle gratuite Tout le monde peut lire les livres Kindle, même sans un appareil Kindle, grâce à l'appli Kindle GRATUITE pour les smartphones, les tablettes et les ordinateurs.

Pour obtenir l'appli gratuite, saisissez votre adresse e-mail ou numéro de téléphone mobile.

Formats

Prix Amazon Neuf à partir de Occasion à partir de
Format Kindle EUR 15,50  
Broché EUR 20,52  
-40%, -50%, -60%, -70%... Découvrez les Soldes Amazon jusqu'au 17 février 2015 inclus. Profitez-en !






Descriptions du produit

Présentation de l'éditeur

Making Big Data Work: Real-World Use Cases and Examples, Practical Code, Detailed Solutions

 

Large-scale data analysis is now vitally important to virtually every business. Mobile and social technologies are generating massive datasets; distributed cloud computing offers the resources to store and analyze them; and professionals have radically new technologies at their command, including NoSQL databases. Until now, however, most books on “Big Data” have been little more than business polemics or product catalogs. Data Just Right is different: It’s a completely practical and indispensable guide for every Big Data decision-maker, implementer, and strategist.

 

Michael Manoochehri, a former Google engineer and data hacker, writes for professionals who need practical solutions that can be implemented with limited resources and time. Drawing on his extensive experience, he helps you focus on building applications, rather than infrastructure, because that’s where you can derive the most value.

 

Manoochehri shows how to address each of today’s key Big Data use cases in a cost-effective way by combining technologies in hybrid solutions. You’ll find expert approaches to managing massive datasets, visualizing data, building data pipelines and dashboards, choosing tools for statistical analysis, and more. Throughout, the author demonstrates techniques using many of today’s leading data analysis tools, including Hadoop, Hive, Shark, R, Apache Pig, Mahout, and Google BigQuery.

 

Coverage includes

  • Mastering the four guiding principles of Big Data success—and avoiding common pitfalls
  • Emphasizing collaboration and avoiding problems with siloed data
  • Hosting and sharing multi-terabyte datasets efficiently and economically
  • “Building for infinity” to support rapid growth
  • Developing a NoSQL Web app with Redis to collect crowd-sourced data
  • Running distributed queries over massive datasets with Hadoop, Hive, and Shark
  • Building a data dashboard with Google BigQuery
  • Exploring large datasets with advanced visualization
  • Implementing efficient pipelines for transforming immense amounts of data
  • Automating complex processing with Apache Pig and the Cascading Java library
  • Applying machine learning to classify, recommend, and predict incoming information
  • Using R to perform statistical analysis on massive datasets
  • Building highly efficient analytics workflows with Python and Pandas
  • Establishing sensible purchasing strategies: when to build, buy, or outsource
  • Previewing emerging trends and convergences in scalable data technologies and the evolving role of the Data Scientist 

Biographie de l'auteur

Michael Manoochehri is an entrepreneur, writer, and optimist. With many years of experience working with enterprise, research, and non-profit organizations, his goal is to help make scalable data analytics more affordable and accessible. Michael has been a member of Google's Cloud Platform developer relations team, focusing on cloud computing and data developer products such as Google BigQuery. In addition, Michael has written for the tech blog ProgrammableWeb.com, has spent time in rural Uganda researching mobile phone use, and holds a master's degree in information management and systems from UC Berkeley's School of Information.

Détails sur le produit

  • Format : Format Kindle
  • Taille du fichier : 6830 KB
  • Nombre de pages de l'édition imprimée : 225 pages
  • Utilisation simultanée de l'appareil : Jusqu'à  appareils simultanés, selon les limites de l'éditeur
  • Editeur : Addison-Wesley Professional; Édition : 1 (30 novembre 2013)
  • Vendu par : Amazon Media EU S.à r.l.
  • Langue : Anglais
  • ISBN-10: 0133359077
  • ISBN-13: 978-0133359077
  • ASIN: B00H0FEU04
  • Synthèse vocale : Activée
  • X-Ray :
  • Word Wise: Non activé
  • Classement des meilleures ventes d'Amazon: n°173.720 dans la Boutique Kindle (Voir le Top 100 dans la Boutique Kindle)
  •  Souhaitez-vous faire modifier les images ?


En savoir plus sur l'auteur

Découvrez des livres, informez-vous sur les écrivains, lisez des blogs d'auteurs et bien plus encore.

Commentaires en ligne

Il n'y a pas encore de commentaires clients sur Amazon.fr
5 étoiles
4 étoiles
3 étoiles
2 étoiles
1 étoiles
Commentaires client les plus utiles sur Amazon.com (beta)
Amazon.com: 4.2 étoiles sur 5  6 commentaires
24 internautes sur 25 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 A broad book with the right depth to go from 0 to 100 (petabytes) 11 janvier 2014
Par Felipe H - Publié sur Amazon.com
Format:Broché|Achat vérifié
Hive, Hadoop, Shark, Dremel, BigQuery, SciPy, NumPy, Pandas, R, Pig... whether you are new or a seasoned big data expert, there is a big and growing universe of keywords to understand. In this book Manoochehri manages to give a through review on the whys and hows, giving the reader just the right depth in each topic to understand the motivation for each of these different technologies, how they are different to each other, and why you would want to use them. I love that he's not afraid to jump and write code, as - when you do it just right - a few lines of code are much more illustrative than a picture or block of texts would do.

Totally recommended. If you want to learn Hadoop, buy a Hadoop book - or an R book if you want to go deeper in that topic. But if you want to understand the current big data universe, how the tools interrelate between each other, and go from data generation to storage to analysis to visualization - this is the book.
11 internautes sur 11 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 A beautiful map if you want to learn the landscape 19 février 2014
Par I Teach Typing - Publié sur Amazon.com
Format:Broché|Achat vérifié
If you work with expensive enterprise strength data management/analysis products like SAS and Oracle and you want a book that will give you a map to cover the open source tools for dealing with "big data" (i.e., Hadoop, Hive, and Pig) get this. It does an amazingly good job of explaining the utility of the various tools that are used to manage *HUGE* data. Everything from the practical concerns in designing web facing applications to analytic data-sets are covered at the perfect depth for someone who knows a bit about data and databases. Even if you are not a programmer, the author does an exceptional job of explaining things from the ground up without babying the reader (e.g., what are the advantages of using CSV files vs XML vs JSON vs Thrift vs Avro). There are code snippets scattered throughout that are useful for comparing and contrasting if you know some programming languages (e.g., SQL queries vs HiveQL) but the book does not attempt to explain the code in great detail. So, you end up with the outline of what a tool does without getting bogged down in the gory details. If you want to go deeper into the solutions the book is full of references to seminal white papers and other external references so you can expand on what is covered.

So, if you keep hearing about things like Hadoop, noSQL, Python, SciPy, Pandas, R and you just want to learn "what is the big deal" or "why bother" learning yet another tool, this is the perfect book.
4 internautes sur 6 ont trouvé ce commentaire utile 
4.0 étoiles sur 5 Great "bird-perspective" on data 22 février 2014
Par Tommy Otzen - Publié sur Amazon.com
Format:Broché|Achat vérifié
Great book for an overview on data, collecting of data, data tools and data files.

Wanting to learn whats up and down in the world of Big Data was accomplished by reading this book.

You'll get valuable understanding of when to use ex. JSON over CSV, with good explanation of why.

I recommend this book for people with little or no experience on how data can be stored, analyzed and visualized.
2 internautes sur 4 ont trouvé ce commentaire utile 
2.0 étoiles sur 5 In the end I have neither the impression I have a good overview of the tools available (at least 31 juillet 2014
Par J. A. Elkink - Publié sur Amazon.com
Format:Format Kindle|Achat vérifié
This book provides an interesting overview of main technologies in data science, but strikes a slightly odd balance between technical and descriptive -- there are some brief code examples that can get you on the way or that give you an impression of the functionality of the particular tool, but it remains very superficial. In the end I have neither the impression I have a good overview of the tools available (at least, not beyond what I already had), nor do I know much in detail about each of them. Most items are explained in too simple language, using analogies where technical detail would have been more interesting. It's also slightly repetitive at times. I think the author has tried to please both more technically inclined and others at the same time, which hasn't really worked.

So, if you want a very quick overview of what data science is, this is an easy read and provides you just that, but if you want anything deeper out of it, I think this book is somewhat disappointing.
5.0 étoiles sur 5 Five Stars 21 décembre 2014
Par SF Local - Publié sur Amazon.com
Format:Format Kindle|Achat vérifié
very informative
Ces commentaires ont-ils été utiles ?   Dites-le-nous

Discussions entre clients

Le forum concernant ce produit
Discussion Réponses Message le plus récent
Pas de discussions pour l'instant

Posez des questions, partagez votre opinion, gagnez en compréhension
Démarrer une nouvelle discussion
Thème:
Première publication:
Aller s'identifier
 

Rechercher parmi les discussions des clients
Rechercher dans toutes les discussions Amazon
   


Rechercher des articles similaires par rubrique