Envoyer sur votre Kindle ou un autre appareil

 
 
 

Essai gratuit

Découvrez gratuitement un extrait de ce titre

Envoyer sur votre Kindle ou un autre appareil

Désolé, cet article n'est pas disponible en
Image non disponible pour la
couleur :
Image non disponible
 

Foundations of Statistical Natural Language Processing [Format Kindle]

Hinrich Schuetze , Christopher Manning

Prix conseillé : EUR 89,49 De quoi s'agit-il ?
Prix éditeur - format imprimé : EUR 89,63
Prix Kindle : EUR 48,08 TTC & envoi gratuit via réseau sans fil par Amazon Whispernet
Économisez : EUR 41,55 (46%)

  • Longueur : 712 pages
  • Langue : Anglais
  • En raison de la taille importante du fichier, ce livre peut prendre plus de temps à télécharger
  • Vous n'avez pas encore de Kindle ? Achetez-le ici Ou commencez à lire dès maintenant avec l'une de nos applications de lecture Kindle gratuites.
App de lecture Kindle gratuite Tout le monde peut lire les livres Kindle, même sans un appareil Kindle, grâce à l'appli Kindle GRATUITE pour les smartphones, les tablettes et les ordinateurs.

Pour obtenir l'appli gratuite, saisissez votre adresse e-mail ou numéro de téléphone mobile.

Formats

Prix Amazon Neuf à partir de Occasion à partir de
Format Kindle EUR 48,08  
Relié EUR 68,68  




Descriptions du produit

Présentation de l'éditeur

Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.

Détails sur le produit

  • Format : Format Kindle
  • Taille du fichier : 10722 KB
  • Nombre de pages de l'édition imprimée : 720 pages
  • Editeur : The MIT Press; Édition : 1 (28 mai 1999)
  • Vendu par : Amazon Media EU S.à r.l.
  • Langue : Anglais
  • ASIN: B007L7LUKO
  • Synthèse vocale : Activée
  • X-Ray :
  • Word Wise: Non activé
  • Classement des meilleures ventes d'Amazon: n°187.710 dans la Boutique Kindle (Voir le Top 100 dans la Boutique Kindle)
  •  Souhaitez-vous faire modifier les images ?


En savoir plus sur les auteurs

Découvrez des livres, informez-vous sur les écrivains, lisez des blogs d'auteurs et bien plus encore.

Commentaires en ligne

Il n'y a pas encore de commentaires clients sur Amazon.fr
5 étoiles
4 étoiles
3 étoiles
2 étoiles
1 étoiles
Commentaires client les plus utiles sur Amazon.com (beta)
Amazon.com: 4.7 étoiles sur 5  19 commentaires
144 internautes sur 145 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 An absolute MUST for anyone interested in NLP. 26 mai 1999
Par Bob Carpenter (carp@research.bell-labs.com) - Publié sur Amazon.com
Format:Relié
This is the best book I've ever read on computational linguistics. It should be ideal for both linguists who want to learn about statistical language processing and those building language applications who want to learn about linguistics. This book isn't even published and it's now my most highly used reference book, joining gems such as Cormen, Leiserson and Rivest's algorithm book, Quirk et al.'s English Grammar, and Andrew Gelman's Bayesian statistics book (three excellent companions to this book, by the way).
The book is written more like a computer science or math book in that it starts absolutely from scratch, but moves quickly and assumes a sophisticated reader. The first one hundred or so pages provide background in probability, information theory and linguistics.
This book covers (almost) every current trend in NLP from a statistical perspective: syntactic tagging, sense disambiguation, parsing, information retrieval, lexical subcategorization, Hidden Markov Models, and probabilistic context-free grammars. It also covers machine translation and information retrieval in later chapters.
It covers all the statistical techniques used in NLP from Bayes' law through to maximum entropy modeling, clustering: nearest neighbors and decision trees, and much more.
What you won't find is information on applications to higher-level discourse and dialogue phenomena like pronoun resolution or speech act classification.
143 internautes sur 147 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 Fantastic return on investment 13 septembre 2000
Par Peter Norvig - Publié sur Amazon.com
Format:Relié
There are lots of books (and even more junk email) with titles like "Get Rich Quick". On the surface, this book is the exact opposite: a scholarly, scientific text aimed at comprehensive, accurate description, not at commercial hype. But if someone told me I had to make a million bucks in one year, and I could only refer to one book to do it, I'd grab a copy of this book and start a web text-processing company. Your return on investment might not be $1M, but this book delivers everything it promises. For all the major practical applications of statistical text processing, this book accurately and clearly surveys the major techniques. It often has pretty good advice about which techniques to prefer, but sometimes reads more like a catalog of listings (this reflects not on the authors' failing, but rather on the field's immaturity).
It's worth comparing this book to the other recent NLP text: Jurafsky and Martin's. (Disclaimer: I worked with them on the preparation of their text.) Jurafsky and Martin cover much more ground, including many aspects that are ignored by Manning and Schutze. So if you want a general overview of natural language, if you want to know about the syntax of English, or the intricacies of dialog, then Jurafsky and Martin is for you. But if your needs are more focused on the algorithms for lower-level text processing with statistical techniques, then Manning and Schutze is far more comprehensive. If you're a serious student or professional in NLP, you just have to have both.
61 internautes sur 63 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 Self-contained and instructive, read the TOC first! 26 mai 2002
Par Jack Sparrow - Publié sur Amazon.com
Format:Relié|Achat vérifié
Compared to the slightly overrated Jurafsky and Martin's classic, this book aims less targets but hits them all more precisely, completely and satisfactory for the reader. That is, just to give you an idea on what to expect, instead of attacking 200 problems on 2 pages each, this book attacks only 40 problems on 10 pages each.

So, read the TOC before you buy the book: if you find your topics there, you're done, you are saved, buy it and be happy. In contrast, you can buy Jurafsky's book without caring to read the TOC: your problem is likely to be mentioned there but it's quite unlikely to be detailed enough to satisfy you.

Some introductory chapters take too much space and some advanced topics are missing. But the book is actually named "Foundations of..." so it seems to deliver precisely what it promisses, which is a precious and rare accomplishment by itself. I recommend this book.
13 internautes sur 15 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 Complete & Self-Contained 23 novembre 2000
Par Chris McKinstry - Publié sur Amazon.com
Format:Relié
In 1957, J. R. Firth coined the phrase "You shall know a word by the company it keeps", unfortunately it's taken almost four decades for us to create the technology and more importantly the corpa, to prove this to be the case.
This is the post-rationalist, post-Chomskian age, and this book is a complete and self-contained introduction to the emperical methods of statistical natural lanagage processing that define it.
If you want in to this field, this is the door.
9 internautes sur 10 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 Which NLP techniques to apply? 12 mai 2001
Par Kah Tong, Seow - Publié sur Amazon.com
Format:Relié
If you need a good introductory textbook on NLP, look no further. While doing a project on information extraction of protein-protein interactions from biological free text, I was not sure which of the NLP grammar methods is relevant to the project. A web survey can give you a long listing of various grammar methods. To gain a sound background on how these grammar methods are related and evolved from one another, study chapters 11 and 12. The techniques used in some successful commercial products are discussed especially in chapter 12.2. With this book, it is unlikely that you will get lost when reading " Survey of the State of the Art in Human Language Technology" ([...]
Ces commentaires ont-ils été utiles ?   Dites-le-nous

Discussions entre clients

Le forum concernant ce produit
Discussion Réponses Message le plus récent
Pas de discussions pour l'instant

Posez des questions, partagez votre opinion, gagnez en compréhension
Démarrer une nouvelle discussion
Thème:
Première publication:
Aller s'identifier
 

Rechercher parmi les discussions des clients
Rechercher dans toutes les discussions Amazon
   


Rechercher des articles similaires par rubrique