• Tous les prix incluent la TVA.
Il ne reste plus que 2 exemplaire(s) en stock (d'autres exemplaires sont en cours d'acheminement).
Expédié et vendu par Amazon.
Emballage cadeau disponible.
Quantité :1
Probabilistic Graphical M... a été ajouté à votre Panier
+ EUR 2,99 (livraison)
D'occasion: Bon | Détails
Vendu par Librairie Decitre
État: D'occasion: Bon
Commentaire: Libraire professionnel. Livre en bon état. Expédié sous 24 à 48 heures. N° de suivi de colis. Satisfait ou remboursé.
Vous l'avez déjà ?
Repliez vers l'arrière Repliez vers l'avant
Ecoutez Lecture en cours... Interrompu   Vous écoutez un extrait de l'édition audio Audible
En savoir plus
Voir les 2 images

Probabilistic Graphical Models - Principles and Techniques (Anglais) Relié – 16 novembre 2009

Voir les 2 formats et éditions Masquer les autres formats et éditions
Prix Amazon Neuf à partir de Occasion à partir de
Format Kindle
"Veuillez réessayer"
"Veuillez réessayer"
EUR 93,62
EUR 89,85 EUR 74,85

Produits fréquemment achetés ensemble

Probabilistic Graphical Models - Principles and Techniques + Pattern Recognition And Machine Learning + Machine Learning - A Probabilistic Perspective
Prix pour les trois: EUR 252,50

Acheter les articles sélectionnés ensemble

Descriptions du produit

Most tasks require a person or an automated system to reason--to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Détails sur le produit

  • Relié: 1208 pages
  • Editeur : MIT Press (16 novembre 2009)
  • Collection : Adaptive Computation and Machine Learning Series
  • Langue : Anglais
  • ISBN-10: 0262013193
  • ISBN-13: 978-0262013192
  • Dimensions du produit: 20,3 x 4,3 x 22,9 cm
  • Moyenne des commentaires client : 5.0 étoiles sur 5  Voir tous les commentaires (1 commentaire client)
  • Classement des meilleures ventes d'Amazon: 29.533 en Livres anglais et étrangers (Voir les 100 premiers en Livres anglais et étrangers)
  •  Souhaitez-vous compléter ou améliorer les informations sur ce produit ? Ou faire modifier les images?

En savoir plus sur les auteurs

Découvrez des livres, informez-vous sur les écrivains, lisez des blogs d'auteurs et bien plus encore.

Dans ce livre (En savoir plus)
Parcourir les pages échantillon
Couverture | Copyright | Table des matières | Extrait | Index
Rechercher dans ce livre:

Quels sont les autres articles que les clients achètent après avoir regardé cet article?

Commentaires en ligne

5.0 étoiles sur 5
5 étoiles
4 étoiles
3 étoiles
2 étoiles
1 étoiles
Voir le commentaire client
Partagez votre opinion avec les autres clients

Commentaires client les plus utiles

Format: Relié Achat vérifié
Un livre plutot clair et exhaustif sur le sujet, utilisable pour apprendre et pour approfondir. Va plus en profondeur que les cours vidéos donnés par l'auteur sur la plateforme coursera.
Remarque sur ce commentaire Avez-vous trouvé ce commentaire utile ? Oui Non Commentaire en cours d'envoi...
Merci pour votre commentaire. Si ce commentaire est inapproprié, dites-le nous.
Désolé, nous n'avons pas réussi à enregistrer votre vote. Veuillez réessayer

Commentaires client les plus utiles sur Amazon.com (beta)

Amazon.com: 27 commentaires
23 internautes sur 24 ont trouvé ce commentaire utile 
Probably the best book for the topic, hard to read with Kindle app on Ipad 23 septembre 2012
Par S. Arikan - Publié sur Amazon.com
Format: Relié
If you're trying to learn probabilistic graphical models on your own, this is the best book you can buy.
The introduction to fundamental probabilistic concepts is better than most probability books out there and the rest of the book has the same quality and in-depth approach. References, discussions and examples are all chosen so that you can take this book as the centre of your learning and make a jump to more detailed treatment of any topic using other resources.

Another huge plus is Professor Daphne Koller's online course material. Her course for probabilistic models is available online, and watching the videos alongside the book really helps sometimes.

If you have a strong mathematical background, you may find the book a little bit too pedagogic for your taste, but if you're looking for a single resource to learn the topic on your own, then this book is what you need.

The only problem with it is that it is a big book to carry around, and if you buy the Kindle edition for the iPad, you'll have to zoom into pages to read comfortably(or maybe I have bad eye sight), and Kindle app on iPad does not keep the zoom level across pages. So my experience is, zoom, pan, read, change page, zoom, pan, go back to previous page to see something, zoom, pan... You get the idea. I'd gladly pay more for a pdf version which I could read with other software on the iPad. Even though my reading experience has been a bit unpleasant due to Kindle app, the book deserves five stars, since it is the content that matters.
74 internautes sur 88 ont trouvé ce commentaire utile 
Brilliant Tome on Graphical Representation, Reasoning and Machine Learning 24 mars 2010
Par Dr. Kasumu Salawu - Publié sur Amazon.com
Format: Relié
Stanford professor, Daphne Koller, and her co-author, Professor Nir Friedman, employed graphical models to motivate thoroughgoing explorations of representation, inference and learning in both Bayesian networks and Markov networks. They do their own bidding at the book's web page, [...], by giving readers a panoramic view of the book in an introductory chapter and a Table of Contents. On the same page, there is a link to an extensive Errata file which lists all the known errors and corrections made in subsequent printings of the book - all the corrections had been incorporated into the copy I have. The authors painstakingly provided necessary background materials from both probability theory and graph theory in the second chapter. Furthermore, in an Appendix, more tutorials are offered on information theory, algorithms and combinatorial optimization. This book is an authoritative extension of Professor Judea Pearl's seminal work on developing the Bayesian Networks framework for causal reasoning and decision making under uncertainty. Before this book was published, I sent an e-mail to Professor Koller requesting some clarification of her paper on object-oriented Bayesian networks; she was most generous in writing an elaborate reply with deliberate speed.
9 internautes sur 10 ont trouvé ce commentaire utile 
used for Coursera PGM course 1 février 2013
Par catwings - Publié sur Amazon.com
Format: Relié Achat vérifié
I bought this book to use for the Coursera course on PGM taught by the author. It was essential to being able to follow the course. I would not say that it is an easy book to pick up and learn from. It was a good reference to use to get more details on the topics covered in the lectures.
30 internautes sur 41 ont trouvé ce commentaire utile 
A comprehensive and tutorial introduction to the subject 26 octobre 2009
Par spikedlatte - Publié sur Amazon.com
Format: Relié Achat vérifié
I have read this book in bits and pieces and find it extremely useful. Finally, we got a book that can be used in classroom settings. There are some typos (hence four stars) that will hopefully get fixed in the future editions. The book also has a lot of new insights to offer that can only be gleaned from the vast existing literature on the topic with excruciating labor. Agreed that this book is pricey but for what it has to offer, I think it was money well spent.
3 internautes sur 3 ont trouvé ce commentaire utile 
The best way to learn about graphical models 2 avril 2014
Par Ian Goodfellow - Publié sur Amazon.com
Format: Format Kindle Achat vérifié
This was the book that really got me into AI research. Clearly written and detailed. I especially like that variational inference is taught using discrete variables so you don't need to learn both variational inference and calculus of variations at the same time.
Ces commentaires ont-ils été utiles ? Dites-le-nous


Souhaitez-vous compléter ou améliorer les informations sur ce produit ? Ou faire modifier les images?