Acheter neuf

Identifiez-vous pour activer la commande 1-Click.
en essayant gratuitement Amazon Premium pendant 30 jours. Votre inscription aura lieu lors du passage de la commande. En savoir plus.
Acheter d'occasion
D'occasion - Bon Voir les détails
Prix : EUR 42,29

Plus de choix
Vous l'avez déjà ? Vendez votre exemplaire ici
Désolé, cet article n'est pas disponible en
Image non disponible pour la
couleur :
Image non disponible


Probabilistic Graphical Models - Principles and Techniques [Anglais] [Relié]

Daphne Koller , N Friedman
5.0 étoiles sur 5  Voir tous les commentaires (1 commentaire client)
Prix : EUR 83,55 Livraison à EUR 0,01 En savoir plus.
  Tous les prix incluent la TVA
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
Il ne reste plus que 6 exemplaire(s) en stock (d'autres exemplaires sont en cours d'acheminement).
Expédié et vendu par Amazon. Emballage cadeau disponible.
Voulez-vous le faire livrer le mardi 26 août ? Choisissez la livraison en 1 jour ouvré sur votre bon de commande. En savoir plus.


Prix Amazon Neuf à partir de Occasion à partir de
Format Kindle EUR 56,49  
Relié EUR 83,55  

Offres spéciales et liens associés

Produits fréquemment achetés ensemble

Probabilistic Graphical Models - Principles and Techniques + Causality
Acheter les articles sélectionnés ensemble
  • Causality EUR 39,78

Descriptions du produit

Most tasks require a person or an automated system to reason--to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Détails sur le produit

  • Relié: 1208 pages
  • Editeur : MIT Press (16 novembre 2009)
  • Collection : Adaptive Computation and Machine Learning Series
  • Langue : Anglais
  • ISBN-10: 0262013193
  • ISBN-13: 978-0262013192
  • Dimensions du produit: 23,4 x 20,8 x 5,2 cm
  • Moyenne des commentaires client : 5.0 étoiles sur 5  Voir tous les commentaires (1 commentaire client)
  • Classement des meilleures ventes d'Amazon: 11.442 en Livres anglais et étrangers (Voir les 100 premiers en Livres anglais et étrangers)
  •  Souhaitez-vous compléter ou améliorer les informations sur ce produit ? Ou faire modifier les images?

En savoir plus sur les auteurs

Découvrez des livres, informez-vous sur les écrivains, lisez des blogs d'auteurs et bien plus encore.

Dans ce livre (En savoir plus)
Parcourir les pages échantillon
Couverture | Copyright | Table des matières | Extrait | Index
Rechercher dans ce livre:

Quels sont les autres articles que les clients achètent après avoir regardé cet article?

Commentaires en ligne 

4 étoiles
3 étoiles
2 étoiles
1 étoiles
5.0 étoiles sur 5
5.0 étoiles sur 5
Commentaires client les plus utiles
5.0 étoiles sur 5 Une référence dans son domaine 19 février 2014
Format:Relié|Achat vérifié
Un livre plutot clair et exhaustif sur le sujet, utilisable pour apprendre et pour approfondir. Va plus en profondeur que les cours vidéos donnés par l'auteur sur la plateforme coursera.
Avez-vous trouvé ce commentaire utile ?
Commentaires client les plus utiles sur (beta) 4.1 étoiles sur 5  26 commentaires
17 internautes sur 17 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 Probably the best book for the topic, hard to read with Kindle app on Ipad 23 septembre 2012
Par S. Arikan - Publié sur
If you're trying to learn probabilistic graphical models on your own, this is the best book you can buy.
The introduction to fundamental probabilistic concepts is better than most probability books out there and the rest of the book has the same quality and in-depth approach. References, discussions and examples are all chosen so that you can take this book as the centre of your learning and make a jump to more detailed treatment of any topic using other resources.

Another huge plus is Professor Daphne Koller's online course material. Her course for probabilistic models is available online, and watching the videos alongside the book really helps sometimes.

If you have a strong mathematical background, you may find the book a little bit too pedagogic for your taste, but if you're looking for a single resource to learn the topic on your own, then this book is what you need.

The only problem with it is that it is a big book to carry around, and if you buy the Kindle edition for the iPad, you'll have to zoom into pages to read comfortably(or maybe I have bad eye sight), and Kindle app on iPad does not keep the zoom level across pages. So my experience is, zoom, pan, read, change page, zoom, pan, go back to previous page to see something, zoom, pan... You get the idea. I'd gladly pay more for a pdf version which I could read with other software on the iPad. Even though my reading experience has been a bit unpleasant due to Kindle app, the book deserves five stars, since it is the content that matters.
71 internautes sur 85 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 Brilliant Tome on Graphical Representation, Reasoning and Machine Learning 24 mars 2010
Par Dr. Kasumu Salawu - Publié sur
Stanford professor, Daphne Koller, and her co-author, Professor Nir Friedman, employed graphical models to motivate thoroughgoing explorations of representation, inference and learning in both Bayesian networks and Markov networks. They do their own bidding at the book's web page, [...], by giving readers a panoramic view of the book in an introductory chapter and a Table of Contents. On the same page, there is a link to an extensive Errata file which lists all the known errors and corrections made in subsequent printings of the book - all the corrections had been incorporated into the copy I have. The authors painstakingly provided necessary background materials from both probability theory and graph theory in the second chapter. Furthermore, in an Appendix, more tutorials are offered on information theory, algorithms and combinatorial optimization. This book is an authoritative extension of Professor Judea Pearl's seminal work on developing the Bayesian Networks framework for causal reasoning and decision making under uncertainty. Before this book was published, I sent an e-mail to Professor Koller requesting some clarification of her paper on object-oriented Bayesian networks; she was most generous in writing an elaborate reply with deliberate speed.
6 internautes sur 7 ont trouvé ce commentaire utile 
4.0 étoiles sur 5 used for Coursera PGM course 1 février 2013
Par catwings - Publié sur
Format:Relié|Achat vérifié
I bought this book to use for the Coursera course on PGM taught by the author. It was essential to being able to follow the course. I would not say that it is an easy book to pick up and learn from. It was a good reference to use to get more details on the topics covered in the lectures.
6 internautes sur 7 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 I am reading through it 21 novembre 2012
Par Patrick Linnen - Publié sur
Format:Relié|Achat vérifié
with an eye to taking the course. Very informative. Although the phrase "in context" covers a multitude of sins. I'd prefer the distinction between the the distribution of an intersection of random variables (where comma's are used as a short-hand) and joint distributions a bit clearer.

Aside, I managed to find an error not listed on the errata web page for the book. The equation for MAP queries on page 26 has it as the maximal assignment of a JOINT distribution, while on the next page it is the maximal assignment of a CONDITIONAL distribution (I believe this is the correct one). This was a little confusing until I read page 26 a bit closer.

Before you ask, yes I do read Math textbooks for pleasure.
30 internautes sur 41 ont trouvé ce commentaire utile 
4.0 étoiles sur 5 A comprehensive and tutorial introduction to the subject 26 octobre 2009
Par spikedlatte - Publié sur
Format:Relié|Achat vérifié
I have read this book in bits and pieces and find it extremely useful. Finally, we got a book that can be used in classroom settings. There are some typos (hence four stars) that will hopefully get fixed in the future editions. The book also has a lot of new insights to offer that can only be gleaned from the vast existing literature on the topic with excruciating labor. Agreed that this book is pricey but for what it has to offer, I think it was money well spent.
Ces commentaires ont-ils été utiles ?   Dites-le-nous
Rechercher des commentaires
Rechercher uniquement parmi les commentaires portant sur ce produit

Discussions entre clients

Le forum concernant ce produit
Discussion Réponses Message le plus récent
Pas de discussions pour l'instant

Posez des questions, partagez votre opinion, gagnez en compréhension
Démarrer une nouvelle discussion
Première publication:
Aller s'identifier

Rechercher parmi les discussions des clients
Rechercher dans toutes les discussions Amazon

Rechercher des articles similaires par rubrique


Souhaitez-vous compléter ou améliorer les informations sur ce produit ? Ou faire modifier les images?