Aucun appareil Kindle n'est requis. Téléchargez l'une des applis Kindle gratuites et commencez à lire les livres Kindle sur votre smartphone, tablette ou ordinateur.

  • Apple
  • Android
  • Windows Phone
  • Android

Pour obtenir l'appli gratuite, saisissez votre adresse e-mail ou numéro de téléphone mobile.

Prix Kindle : EUR 15,88

Économisez
EUR 11,85 (43%)

TVA incluse

Ces promotions seront appliquées à cet article :

Certaines promotions sont cumulables avec d'autres offres promotionnelles, d'autres non. Pour en savoir plus, veuillez vous référer aux conditions générales de ces promotions.

Envoyer sur votre Kindle ou un autre appareil

Envoyer sur votre Kindle ou un autre appareil

Repliez vers l'arrière Repliez vers l'avant
Narration Audible Lecture en cours... Interrompu   Vous écoutez un extrait de la narration Audible pour ce livre Kindle.
En savoir plus

Python and HDF5 Format Kindle


Voir les formats et éditions Masquer les autres formats et éditions
Prix Amazon
Neuf à partir de Occasion à partir de
Format Kindle
"Veuillez réessayer"
EUR 15,88

Longueur : 152 pages Langue : Anglais

Ponts de mai 2016 Promo Ponts de mai 2016


Descriptions du produit

Présentation de l'éditeur

Gain hands-on experience with HDF5 for storing scientific data in Python. This practical guide quickly gets you up to speed on the details, best practices, and pitfalls of using HDF5 to archive and share numerical datasets ranging in size from gigabytes to terabytes.

Through real-world examples and practical exercises, you’ll explore topics such as scientific datasets, hierarchically organized groups, user-defined metadata, and interoperable files. Examples are applicable for users of both Python 2 and Python 3. If you’re familiar with the basics of Python data analysis, this is an ideal introduction to HDF5.

  • Get set up with HDF5 tools and create your first HDF5 file
  • Work with datasets by learning the HDF5 Dataset object
  • Understand advanced features like dataset chunking and compression
  • Learn how to work with HDF5’s hierarchical structure, using groups
  • Create self-describing files by adding metadata with HDF5 attributes
  • Take advantage of HDF5’s type system to create interoperable files
  • Express relationships among data with references, named types, and dimension scales
  • Discover how Python mechanisms for writing parallel code interact with HDF5

Détails sur le produit

  • Format : Format Kindle
  • Taille du fichier : 1469 KB
  • Nombre de pages de l'édition imprimée : 152 pages
  • Utilisation simultanée de l'appareil : Illimité
  • Editeur : O'Reilly Media; Édition : 1 (21 octobre 2013)
  • Vendu par : Amazon Media EU S.à r.l.
  • Langue : Anglais
  • ISBN-10: 1491944994
  • ISBN-13: 978-1491944998
  • ASIN: B00G2QUU6U
  • Synthèse vocale : Activée
  • X-Ray :
  • Word Wise: Non activé
  • Composition améliorée: Non activé
  • Moyenne des commentaires client : Soyez la première personne à écrire un commentaire sur cet article
  • Classement des meilleures ventes d'Amazon: n°264.398 dans la Boutique Kindle (Voir le Top 100 dans la Boutique Kindle)
  •  Voulez-vous faire un commentaire sur des images ou nous signaler un prix inférieur ?

Commentaires en ligne

Il n'y a pas encore de commentaires clients sur Amazon.fr
5 étoiles
4 étoiles
3 étoiles
2 étoiles
1 étoiles

Commentaires client les plus utiles sur Amazon.com (beta)

Amazon.com: HASH(0x92fc7ef4) étoiles sur 5 3 commentaires
12 internautes sur 12 ont trouvé ce commentaire utile 
HASH(0x92674c00) étoiles sur 5 Get this Book Now! 13 novembre 2013
Par Al - Publié sur Amazon.com
Format: Broché
Andrew Collette's "Python and HDF5" is a welcome, overdue, and timely addition to the Python canon. h5py, an interface to HDF5 in Python, has become the proverbial "gateway drug" into HDF5 for most; however, h5py lacked for some time what this book now delivers--- a clear, concise, example-ridden text that teaches even the most novice of Python users how to leverage HDF5.

The author assumes minimal familiarity with Python and numpy; however, in the event you're coming at this cold, chapter 2 walks you through the basics. The author continues with datasets (as he writes, "the central feature of HDF5"). After that, you're off and running and free to explore the remaining sections on chunking and compression, hierarchy, external links, attributes, etc. He even includes a section on parallel HDF5 with mpi4py (a welcome surprise).

As someone who's aimlessly "Googled" his way through h5py in the past, I have to say this book is worth every penny. It's all here. Let this book and Python shape the way you think about HDF5, and maybe for the first time, you will see its simplicity.
10 internautes sur 10 ont trouvé ce commentaire utile 
HASH(0x9348c460) étoiles sur 5 An excellent technical read, concise, professional 28 novembre 2013
Par A. Zubarev - Publié sur Amazon.com
Format: Broché
It is probably yesterday’s news that Python is the de facto programming language for anything Data Science. And the latest book on Python and HDF5 integration is a more recent proof to that.

I want to state here that it seems to be the ONLY book on the market today on the becoming increasingly popular self contained data storage and manipulation format HDF5 that explains how to program against it in Python at an enterprise level.

Even though it is a book review, let me briefly explain that HDF5 is a database like, hierarchical file structure closely resembling the early file-based databases implementing Balanced Tree indexing for fast data retrieval. The fact the file is self contained helps keep data, attributes and even computational results together for transparent data exchange, in fact it is so inter-operating platforms exchange-ready it takes complete care of the platform differences as little-endian versa big-endian for example, and boy Andrew knows how to explain that in the book!

Actually, the book has made me aware of how important it is to use proper technologies when you have no idea where (here platform) your data will be consumed.

As a brief side note, myself I programmed hierarchical data structures for fats data retrieval in the early 90s, in C, not even knowing they are called B-Trees. And the concept has such a broad implementation.

So in short, the book is excellent, written in a concise, professional manner (between me and you, 0 volume inflating fluff).

The author has made sure the book is full of useful examples covering each nuance or an important feature so reading this book feels natural and logical. I am also glad the author devoted a significant effort to convey to a developer ( I hate the word ‘programmer’ :-) ) on the proper methods of concurrent programming, which is what a pity – a common omission in many beginners’ books.

I am sure this book will make you going or will let you start coding against HDF5 in no time. I am sure this book will be used as a table reference (or on your computer desktop).

I am giving this book a 5 out of 5 rating, kudos to O’Reilly that has delivered yet another outstanding publication.

Disclaimer: This book was given to me for free as part of the blogger review program by O'Reilly Media.
HASH(0x925909c0) étoiles sur 5 Five Stars 10 août 2015
Par LPO - Publié sur Amazon.com
Format: Format Kindle Achat vérifié
Excellent discussion and demonstration of the combination of 2 big data powerhouse technologies. Very well written and accessible.
Ces commentaires ont-ils été utiles ? Dites-le-nous

Discussions entre clients