The Elements of Statistical Learning et plus d'un million d'autres livres sont disponibles pour le Kindle d'Amazon. En savoir plus
EUR 71,72
  • Tous les prix incluent la TVA.
En stock.
Expédié et vendu par Amazon.
Emballage cadeau disponible.
Quantité :1
Amazon rachète votre
article EUR 26,17 en chèque-cadeau.
Vous l'avez déjà ?
Repliez vers l'arrière Repliez vers l'avant
Ecoutez Lecture en cours... Interrompu   Vous écoutez un extrait de l'édition audio Audible
En savoir plus
Voir les 2 images

The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Anglais) Relié – 9 février 2009


Voir les 2 formats et éditions Masquer les autres formats et éditions
Prix Amazon Neuf à partir de Occasion à partir de
Format Kindle
"Veuillez réessayer"
Relié
"Veuillez réessayer"
EUR 71,72
EUR 68,72 EUR 81,91

Offres spéciales et liens associés


Produits fréquemment achetés ensemble

The Elements of Statistical Learning: Data Mining, Inference, and Prediction + Pattern Recognition And Machine Learning
Prix pour les deux : EUR 152,19

Acheter les articles sélectionnés ensemble


Descriptions du produit

The Elements of Statistical Learning This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world. Full description


Vendez cet article - Prix de rachat jusqu'à EUR 26,17
Vendez The Elements of Statistical Learning: Data Mining, Inference, and Prediction contre un chèque-cadeau d'une valeur pouvant aller jusqu'à EUR 26,17, que vous pourrez ensuite utiliser sur tout le site Amazon.fr. Les valeurs de rachat peuvent varier (voir les critères d'éligibilité des produits). En savoir plus sur notre programme de reprise Amazon Rachète.

Détails sur le produit

  • Relié: 745 pages
  • Editeur : Springer-Verlag New York Inc.; Édition : 5e (9 février 2009)
  • Collection : Springer Series in Statistics
  • Langue : Anglais
  • ISBN-10: 0387848576
  • ISBN-13: 978-0387848570
  • Dimensions du produit: 23,4 x 15,7 x 3,8 cm
  • Moyenne des commentaires client : 5.0 étoiles sur 5  Voir tous les commentaires (1 commentaire client)
  • Classement des meilleures ventes d'Amazon: 8.719 en Livres anglais et étrangers (Voir les 100 premiers en Livres anglais et étrangers)
  •  Souhaitez-vous compléter ou améliorer les informations sur ce produit ? Ou faire modifier les images?


Dans ce livre (En savoir plus)
Parcourir les pages échantillon
Couverture | Copyright | Table des matières | Extrait | Index
Rechercher dans ce livre:

Quels sont les autres articles que les clients achètent après avoir regardé cet article?

Commentaires en ligne

5.0 étoiles sur 5
5 étoiles
1
4 étoiles
0
3 étoiles
0
2 étoiles
0
1 étoiles
0
Voir le commentaire client
Partagez votre opinion avec les autres clients

Commentaires client les plus utiles

0 internautes sur 6 ont trouvé ce commentaire utile  Par J-claude Rabusseau sur 21 décembre 2012
Format: Relié Achat vérifié
Je suis satisfaite du délai de réception toujours très rapide, de la qualité de l'emballage bien protecteur. Je ne peux donner de jugement sur le contenu qui est très spécifique. Ce livre est un cadeau destiné à un étudiant en master de mathématiques et je n'ai pas le niveau - loin s'en faut - pour juger de la qualité du texte, sans parler des formules mathématiques que je trouve fort jolies sur le plan esthétique faute d'en comprendre le sens :)))
1 commentaire Avez-vous trouvé ce commentaire utile ? Oui Non Commentaire en cours d'envoi...
Merci pour votre commentaire. Si ce commentaire est inapproprié, dites-le nous.
Désolé, nous n'avons pas réussi à enregistrer votre vote. Veuillez réessayer

Commentaires client les plus utiles sur Amazon.com (beta)

Amazon.com: 40 commentaires
31 internautes sur 34 ont trouvé ce commentaire utile 
excellent overview, especially for outsiders, ties the field together conceptually 13 avril 2011
Par Matthew Grosso - Publié sur Amazon.com
Format: Relié Achat vérifié
This review is written from the perspective of a programmer who has sometimes had the chance to choose, hire, and work with algorithms and the mathematician/statisticians that love them in order to get things done for startup companies. I don't know if this review will be as helpful to professional mathematicians, statisticians, or computer scientists.

The good news is, this is pretty much the most important book you are going to read in the space. It will tie everything together for you in a way that I haven't seen any other book attempt. The bad news is you're going to have to work for it. If you just need to use a tool for a single task this book won't be worth it; think of it as a way to train yourself in the fundamentals of the space, but don't expect a recipe book. Get something in the "using R" series for that.

When it came out in 2001 my sense of machine learning was of a jumbled set of recipes that tended to work in some cases. This book showed me how the statistical concepts of bias, variance, smoothing and complexity cut across both fields of traditional statistics and inference and the machine learning algorithms made possible by cheaper cpus. Chapters 2-5 are worth the price of the book by themselves for their overview of learning, linear methods, and how those methods can be adopted for non-linear basis functions.

The hard parts:

First, don't bother reading this book if you aren't willing to learn at least the basics of linear algebra first. Skim the second and third chapters to get a sense for how rusty
your linear algebra is and then come back when you're ready.

Second, you really really want to use the SQRRR technique with this book. Having that glimpse of where you are going really helps guide you're understanding when you dig in for real.

Third, I wish I had known of R when I first read this; I recommend using it along with some sample data sets to follow along with the text so the concepts become skills not just
abstract relationships to forget. It would probably be worth the extra time, and I wish I had known to do that then.

Fourth, if you are reading this on your own time while making a living, don't expect to finish the book in a month or two.
41 internautes sur 47 ont trouvé ce commentaire utile 
Has the most post-its of any book on my shelf 4 avril 2009
Par Craig Garvin - Publié sur Amazon.com
Format: Relié
This is one of the best books in a difficult field to survey and summarize. Like 'Pattern Recognition', 'Statistical Learning' is an umbrella term for a broad range of techniques of varying complexity, rigor and acceptance by practitioners in the field. The audience for such a text ranges from the user requiring a code library to the mathematician seeking proof of every statement. I sit somewhere in the middle, but more towards the mathematical end. I subscribe to the traditional statistician's view of Machine Learning. It is a term invented in order to avoid having to prove theorems and dodge the rigors of 'real' statistics. However, I strongly support such a course of action. There is an immense need for Machine Learning algorithms, whether they have actual properties or not, and an equal need for books to introduce these topics to people like myself who have a strong mathematical background, but have not been exposed to these techniques.

Hastie & Tibshirani has the most post-it's of any book on my shelf. When my company built an custom multivariate statistical library for our targeted product, we largely followed Hastie & Tibshirani's taxonomy. Their overview of support vector machines is excellent, and I found little of value to me in dedicated volumes like Cristianini & Shawe-Taylor that wasn't covered in Hastie & Tibshirani. Hastie & Tibshirani is another book with excellent visual aides. In addition to some great 2-D representations of complex multidimensional spaces, I thought the 'car going up hill' icon was a very useful cue that the level was going up a notch.

Having praised this book, I can't argue with any of the negative reviews. There is no right answer of where to start or what to cover. This book will be too mathematical for some, insufficiently rigorous for others, but was just right for me. It will offer too much of a hodge-podge of techniques, miss someone's favorite, or offer just the right balance. In the end, it was the best one for me, so if you're like me (someone with a very solid math base, not a mathematician, who appreciates rigor, but isn't married to it, and who is looking to self-start on this topic.) you'll like it.
93 internautes sur 119 ont trouvé ce commentaire utile 
Useful research summary; a disaster otherwise 17 février 2010
Par SP, ML, Stats - Publié sur Amazon.com
Format: Relié Achat vérifié
I have three texts in machine learning (Duda et. al, Bishop, and this one), and I can unequivocally say that, in my judgement, if you're looking to learn the key concepts of machine learning, this one is by far the worst of the three. Quite simply, it reads almost as a research monologue, only with less explanation and far less coherence. There's little/no attempt to demystify concepts to the newcomer, and the exposition is all over the map. There simply isn't a clear, coherent path that the authors set out to go on in writing a given chapter of this text; it's as if they tried to squeeze every bit of information of the most recent results into the chapter, with little regard to what such a decision might do to the overall readability of the text and the newcomer's understanding. To people who might disagree with me on this point, I'd recommend reading a chapter in Bishop's text and comparing it to similar content in this one, and I think you'll at least better appreciate my viewpoint, if not agree with it.

So you might be wondering, why do I even own the text given my opinion? Well, two reasons: (1) it cost 25 dollars through Springer and a contract they have with my university (definitely look into this before buying on Amazon!), and (2) if you actually already know the concepts, it is quite useful as a summary of what's out there. So to those who understand the basics of machine learning, and also have exposure to greedy algorithms, convex optimization, wavelets, and some other often-utilized methods in the text, this makes for a pretty good reference.

The authors are definitely very well-known researchers in the field, who in particular have written some good papers on a variety of machine learning topics (l1-norm penalized regression, analysis of boosting, to name just two), and thus this book naturally will attract some buzz. It may be very useful to someone like myself who is already familiar with much of what's in the book, or someone who is an expert in the field and just uses it as a quick reference. As a pedagogical tool, however, I think it's pretty much a disaster, and feel compelled to write this as to prevent the typical buyer -- who undoubtedly is buying it to learn and not to use as a reference -- from wasting a lot of money on the wrong text.
14 internautes sur 16 ont trouvé ce commentaire utile 
my big brown book of statistic learning tools 22 mars 2009
Par S. Matthews - Publié sur Amazon.com
Format: Relié Achat vérifié
This is a quite interesting, and extremely useful book, but it is wearing to read in large chunks. The problem, if you want to call it that, is that it is essentially a 700 page catalogue of clever hacks in statistical learning. From a technical point of view it is well-ehough structured, but there is not the slightest trace of an overarching philosophy. And if you don't actually have a philosophical perspective in place before you start, the read you face might well be an even harder grind. Be warned.

Some of the reviews here complain that there is too much math. I don't think that is an issue. If you have decent intuitions in geometry, linear algebra, probability and information theory, then you should be able to cruise through and/or browse in a fairly relaxed way. If you don't have those intuitions, then you are attempting to read the wrong book.

There were a couple of things that I expected (things I happen to know a bit about), but that were missing. On the unsupervised learning side, the discussion of Gaussian mixture clustering was, I thought, a bit short and superficial, and did not bring out the combination of theoretical and practical power that the method offers. On the supervised learning side, I was surprised that a book that dedicates so much time to linear regression finds no room for a discussion of Gaussian process regression as far as I could see (the nearest point of approach is the use of Gaussian radial basis functions [oops: having written that, I immediately came across a brief discussion (S5.8.1) of, essentially, GP regression - though with no reference to standard literature]).
7 internautes sur 7 ont trouvé ce commentaire utile 
Actually does something (huge) with the math 17 mai 2014
Par John Mount - Publié sur Amazon.com
Format: Relié Achat vérifié
I have been using The Elements of Statistical Learning for years, so it is finally time to try and review it.

The Elements of Statistical Learning is a comprehensive mathematical treatment of machine learning from a statistical perspective. This means you get good derivations of popular methods such as support vector machines, random forests, and graphical models; but each is developed only after the appropriate (and wrongly considered less sexy) statistical framework has already been derived (linear models, kernel smoothing, ensembles, and so on).

In addition to having excellent and correct mathematical derivations of important algorithms The Elements of Statistical Learning is fairly unique in that it actually uses the math to accomplish big things. My favorite examples come from Chapter 3 "Linear Methods for Regression." The standard treatments of these methods depend heavily on respectful memorization of regurgitation of original iterative procedure definitions of the various regression methods. In such a standard formulation two regression methods are different if they have superficially different steps or if different citation/priority histories. The Elements of Statistical Learning instead derives the stopping conditions of each method and considers methods the same if they generate the same solution (regardless of how they claim they do it) and compares consequences and results of different methods. This hard use of isomorphism allows amazing results such as Figure 3.15 (which shows how Least Angle Regression differs from Lasso regression, not just in algorithm description or history: but by picking different models from the same data) and section 3.5.2 (which can separate Partial Least Squares' design CLAIM of fixing the x-dominance found in principle components analysis from how effective it actually is as fixing such problems).

The biggest issue is who is the book for? This is a mathy book emphasizing deep understanding over mere implementation. Unlike some lesser machine learning books the math is not there for appearances or mere intimidating typesetting: it is there to allow the authors to organize many methods into a smaller number of consistent themes. So I would say the book is for researchers and machine algorithm developers. If you have a specific issue that is making inference difficult you may find the solution in this book. This is good for researchers but probably off-putting for tinkers (as this book likely has methods superior to their current favorite new idea). The interested student will also benefit from this book, the derivations are done well so you learn a lot by working through them.

Finally- don't buy the kindle version, but the print book. This book is satisfying deep reading and you will want the advantages of the printed page (and Amazon's issues in conversion are certainly not the authors' fault).
Ces commentaires ont-ils été utiles ? Dites-le-nous


Commentaires

Souhaitez-vous compléter ou améliorer les informations sur ce produit ? Ou faire modifier les images?