Acheter d'occasion
EUR 12,72
+ EUR 2,99 (livraison en France métropolitaine)
D'occasion: Très bon | Détails
Vendu par awesomebooksfr
État: D'occasion: Très bon
Commentaire: Expédié sous 48h de notre dépôt en Angleterre. Prévoyez environ 7 à 10 jours pour la livraison. Cet article est d'occasion mais il est toujours en bon état. Certains annotations et signes d'usure sont à prévoir. Pour toute question n'hésitez pas à nous contacter.
Vous l'avez déjà ?
Repliez vers l'arrière Repliez vers l'avant
Ecoutez Lecture en cours... Interrompu   Vous écoutez un extrait de l'édition audio Audible
En savoir plus
Voir cette image

Artificial Intelligence: A Modern Approach: United States Edition (Anglais) Relié – 13 décembre 1994

Voir les 2 formats et éditions Masquer les autres formats et éditions
Prix Amazon
Neuf à partir de Occasion à partir de
"Veuillez réessayer"
EUR 41,70 EUR 12,72
"Veuillez réessayer"

Il y a une édition plus récente de cet article:

Artificial Intelligence: A Modern Approach
EUR 198,00
Habituellement expédié sous 1 à 3 mois.
click to open popover

Offres spéciales et liens associés

Descriptions du produit

Présentation de l'éditeur

For one/two-semester, undergraduate or graduate-level courses in Artificial Intelligence.

The most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence.

Aucun appareil Kindle n'est requis. Téléchargez l'une des applis Kindle gratuites et commencez à lire les livres Kindle sur votre smartphone, tablette ou ordinateur.

  • Apple
  • Android
  • Windows Phone
  • Android

Pour obtenir l'appli gratuite, saisissez votre numéro de téléphone mobile.

Détails sur le produit

Quels sont les autres articles que les clients achètent après avoir regardé cet article?

Commentaires en ligne

Il n'y a pas encore de commentaires clients sur
5 étoiles
4 étoiles
3 étoiles
2 étoiles
1 étoile

Commentaires client les plus utiles sur (beta) 3.9 étoiles sur 5 31 commentaires
1 internautes sur 1 ont trouvé ce commentaire utile 
2.0 étoiles sur 5 Worst Textbook of the year! 7 février 2013
Par Rafael Carvajal Díaz - Publié sur
Format: Relié Achat vérifié
I don't know why authors of AI and Machiner Learning books can not write their books explaining concepts in the most effective and efficient way, without using all the very abstract and meaningless jargon and expressions of the AI.

Why can't we find clear allegories in this book? why can't we find clear examples, flow-charts and other simple graphic illustrations on how to code an AI algorithm while suffering the minimum.
5 internautes sur 6 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 Very well written very consise introductory book on AI 5 juillet 2001
Par Global engineer - Publié sur
Format: Relié Achat vérifié
This book is very well written makes the complex subject a little easier to comprehend. The best thing about this book however is probably the integration of historical accomplishments inside the text. You don't just get an explanation on why something is and thats it, you get to see how an idea originated and evolved over time. I wish more computer science books integrated the history of the genre like this book does.
4.0 étoiles sur 5 Artificial intelligence 16 décembre 2011
Par Gaël Waiche - Publié sur
Format: Relié Achat vérifié
Very good reference book on main trends in artificial intelligence. It's a bit outdated but all the basis are here with very clear explanations and implementation examples in pseudo code.
78 internautes sur 97 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 The optimal learning algorithm for learning A.I. 24 septembre 2001
Par Dr. Lee D. Carlson - Publié sur
Format: Relié Achat vérifié
Progress in the field of artificial intelligence has executed a random walk after establishing itself with a bang in the 1950s. Optimistic predictions of the future of A.I. in that decade only partially came true in the decades after that. Currently, the field is divided up into subfields going by the names data mining, computational intelligence, intelligent agent theory, expert systems, etc. This book is the best book available for learning about this fascinating and important subject. The applications of A.I. are enormous, and will increase dramatically in the decades ahead. Indeed the prospects are very exciting, and the authors themselves have been involved heavily in extending the frontiers of the subject. Some of the main points of the book that really stand out include:
1. The useful exercises at the end of each chapter. 2. The discussion of simple reflex and goal-based agents. 3. The treatment of constraint satisfaction problems and heuristics for these kinds of problems. 4. The overview of iterative improvement algorithms, particularly the discussion of simulated annealing. 5. The discussion of propositional logic and its limitations as an effective A.I. paradigm. 6. The treatment of first-order logic and its use in modeling simple reflex agents, change, and its use in situation calculus. There is a good overview of inference in first-order logic in chapter 9 of the book, including completeness and resolution. 7. The treatment of logic programming systems; the Prolog language is discussed as a logical programming language. Noting that Prolog cannot specify constraints on values, the authors discuss constraint logic programming (CLP) as an alternative logic programming language that allows constraints. 8. The discussion of semantic networks and description logics. 9. The treatment of conditional programming via the conditional partial-order planner (CPOP). 10. Representing knowledge in an uncertain domain and the semantics and inference in belief networks. 11. The brief discussions on stochastic simulation methods and fuzzy logic. 12. The discussion on computational learning theory 13. The treatment of neural networks, especially the discussion of multilayer feed-forward networks and the comparison between belief networks and neural networks. 14. The brief discussion on genetic algorithms and evolutionary programming. 15. The discussion on explanation-based learning and the technique of memoization. 16. The (excellent) overview of inductive logic programming. This relatively recent area was new to me at the time of reading so I appreciated the discussion. The authors briefly mention the approach of discovery systems and the Automated Mathematician (AM). 17. The interesting discussion of telepathic communication between robots via the exchange of internal representations. 18. The discussion on a formal grammar for a subset of English and the extensive treatment of natural language processing. 19. The discussion of speech recognition and the use of hidden Markov models and the Viterbi algorithm. 20. The fascinating discussion on robotics, particularly the treatment of configuration spaces, which brings in some techniques from computational geometry and topology. 21. The discussion on the philosophical ramifications of A.I. Future developments in A.I. will provide a unique testing ground for philosophy, in a way that will be unparalleled in the history of philosophy. Philosophers critical of A.I. will have the opportunity to check whether their arguments against the possibility of "strong A.I.", are in fact true.
23 internautes sur 26 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 A Review of Russell and Norvig's AI: A Modern Approach 16 février 2001
Par Robert Jones - Publié sur
Format: Relié
Russell and Norvig's AI: A Modern Approach is THE best AI text out there. At 932 pages it is encyclopedic, it has nearly everything. So what is missing? How could it be improved? Probably the worst thing about the book is the binding. I am not sure that you can read it from cover to cover without some pages coming loose. Perhaps its the length. Perhaps it needs to be split into two volumes. I am not a fan of pseudocode and all the algorithms are in pseudocode. I think the right compromise between detailed practical code and tutorial compactness is something like the code in Jackson's text Expert Systems. I realize this might make a long book even longer but I still think some examples in Lisp, Prolog, etc. would be an improvement. There are a few things missing. Some detail on case-based reasoning is needed and some newer topics like hybrid systems and rough sets. Also, more on parallel computing for AI. Occasionally I was annoyed by the references. On page 27 the authors attribute a story to Heckerman's 1991 thesis. The thesis contains no such story. The reference should have been to a private communication. By now you might think I hate the book. No. I am suggesting improvements. I repeat. It is THE BEST SINGLE AI TEXT IN PRINT. But you will not be able to teach the whole book in a single AI course. Not even a two semester course.
Ces commentaires ont-ils été utiles ? Dites-le-nous

Rechercher des articles similaires par rubrique


Souhaitez-vous compléter ou améliorer les informations sur ce produit ? Ou faire modifier les images?