• Tous les prix incluent la TVA.
Il ne reste plus que 2 exemplaire(s) en stock (d'autres exemplaires sont en cours d'acheminement).
Expédié et vendu par Amazon. Emballage cadeau disponible.
Data Just Right: Introduc... a été ajouté à votre Panier
+ EUR 2,99 (livraison en France métropolitaine)
D'occasion: Comme neuf | Détails
État: D'occasion: Comme neuf
Commentaire: Like New Paperback/Softcover Book, International Economy Edition. Author , Content & Edition is same as Listed edition. Satisfaction Guaranteed .ISBN AND COVER MAY BE CHANGED. The access code or CD may be not available with this book. Guaranteed Super Fast Delivery
Vous l'avez déjà ?
Repliez vers l'arrière Repliez vers l'avant
Ecoutez Lecture en cours... Interrompu   Vous écoutez un extrait de l'édition audio Audible
En savoir plus
Voir cette image

Data Just Right: Introduction to Large-Scale Data & Analytics (Anglais) Broché – 19 décembre 2013

4,2 étoiles sur 5
5 étoiles
4 étoiles
3 étoiles
2 étoiles
1 étoile
4,2 étoiles sur 5 6 commentaires provenant des USA

Voir les 4 formats et éditions Masquer les autres formats et éditions
Prix Amazon
Neuf à partir de Occasion à partir de
Format Kindle
"Veuillez réessayer"
"Veuillez réessayer"
EUR 37,48
EUR 32,17 EUR 23,07
Note: Cet article est éligible à la livraison en points de collecte. Détails
Récupérer votre colis où vous voulez quand vous voulez.
  • Choisissez parmi 17 000 points de collecte en France
  • Les membres du programme Amazon Prime bénéficient de livraison gratuites illimitées
Comment commander vers un point de collecte ?
  1. Trouvez votre point de collecte et ajoutez-le à votre carnet d’adresses
  2. Sélectionnez cette adresse lors de votre commande
Plus d’informations

rentrée scolaire 2017 rentrée scolaire 2017

click to open popover

Offres spéciales et liens associés

Description du produit

Présentation de l'éditeur

Making Big Data Work: Real-World Use Cases and Examples, Practical Code, Detailed Solutions


Large-scale data analysis is now vitally important to virtually every business. Mobile and social technologies are generating massive datasets; distributed cloud computing offers the resources to store and analyze them; and professionals have radically new technologies at their command, including NoSQL databases. Until now, however, most books on “Big Data” have been little more than business polemics or product catalogs. Data Just Right is different: It’s a completely practical and indispensable guide for every Big Data decision-maker, implementer, and strategist.


Michael Manoochehri, a former Google engineer and data hacker, writes for professionals who need practical solutions that can be implemented with limited resources and time. Drawing on his extensive experience, he helps you focus on building applications, rather than infrastructure, because that’s where you can derive the most value.


Manoochehri shows how to address each of today’s key Big Data use cases in a cost-effective way by combining technologies in hybrid solutions. You’ll find expert approaches to managing massive datasets, visualizing data, building data pipelines and dashboards, choosing tools for statistical analysis, and more. Throughout, the author demonstrates techniques using many of today’s leading data analysis tools, including Hadoop, Hive, Shark, R, Apache Pig, Mahout, and Google BigQuery.


Coverage includes

  • Mastering the four guiding principles of Big Data success—and avoiding common pitfalls
  • Emphasizing collaboration and avoiding problems with siloed data
  • Hosting and sharing multi-terabyte datasets efficiently and economically
  • “Building for infinity” to support rapid growth
  • Developing a NoSQL Web app with Redis to collect crowd-sourced data
  • Running distributed queries over massive datasets with Hadoop, Hive, and Shark
  • Building a data dashboard with Google BigQuery
  • Exploring large datasets with advanced visualization
  • Implementing efficient pipelines for transforming immense amounts of data
  • Automating complex processing with Apache Pig and the Cascading Java library
  • Applying machine learning to classify, recommend, and predict incoming information
  • Using R to perform statistical analysis on massive datasets
  • Building highly efficient analytics workflows with Python and Pandas
  • Establishing sensible purchasing strategies: when to build, buy, or outsource
  • Previewing emerging trends and convergences in scalable data technologies and the evolving role of the Data Scientist 

Biographie de l'auteur

Michael Manoochehri is an entrepreneur, writer, and optimist. With many years of experience working with enterprise, research, and non-profit organizations, his goal is to help make scalable data analytics more affordable and accessible. Michael has been a member of Google's Cloud Platform developer relations team, focusing on cloud computing and data developer products such as Google BigQuery. In addition, Michael has written for the tech blog ProgrammableWeb.com, has spent time in rural Uganda researching mobile phone use, and holds a master's degree in information management and systems from UC Berkeley's School of Information.

Aucun appareil Kindle n'est requis. Téléchargez l'une des applis Kindle gratuites et commencez à lire les livres Kindle sur votre smartphone, tablette ou ordinateur.

  • Apple
  • Android
  • Windows Phone
  • Android

Pour obtenir l'appli gratuite, saisissez votre numéro de téléphone mobile.

Détails sur le produit

Commentaires en ligne

Il n'y a pas encore de commentaires clients sur Amazon.fr
5 étoiles
4 étoiles
3 étoiles
2 étoiles
1 étoile

Commentaires client les plus utiles sur Amazon.com (beta) (Peut contenir des commentaires issus du programme Early Reviewer Rewards)

Amazon.com: 4.2 étoiles sur 5 6 commentaires
13 internautes sur 13 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 A beautiful map if you want to learn the landscape 19 février 2014
Par I Teach Typing - Publié sur Amazon.com
Format: Broché Achat vérifié
If you work with expensive enterprise strength data management/analysis products like SAS and Oracle and you want a book that will give you a map to cover the open source tools for dealing with "big data" (i.e., Hadoop, Hive, and Pig) get this. It does an amazingly good job of explaining the utility of the various tools that are used to manage *HUGE* data. Everything from the practical concerns in designing web facing applications to analytic data-sets are covered at the perfect depth for someone who knows a bit about data and databases. Even if you are not a programmer, the author does an exceptional job of explaining things from the ground up without babying the reader (e.g., what are the advantages of using CSV files vs XML vs JSON vs Thrift vs Avro). There are code snippets scattered throughout that are useful for comparing and contrasting if you know some programming languages (e.g., SQL queries vs HiveQL) but the book does not attempt to explain the code in great detail. So, you end up with the outline of what a tool does without getting bogged down in the gory details. If you want to go deeper into the solutions the book is full of references to seminal white papers and other external references so you can expand on what is covered.

So, if you keep hearing about things like Hadoop, noSQL, Python, SciPy, Pandas, R and you just want to learn "what is the big deal" or "why bother" learning yet another tool, this is the perfect book.
26 internautes sur 28 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 A broad book with the right depth to go from 0 to 100 (petabytes) 11 janvier 2014
Par Felipe H - Publié sur Amazon.com
Format: Broché Achat vérifié
Hive, Hadoop, Shark, Dremel, BigQuery, SciPy, NumPy, Pandas, R, Pig... whether you are new or a seasoned big data expert, there is a big and growing universe of keywords to understand. In this book Manoochehri manages to give a through review on the whys and hows, giving the reader just the right depth in each topic to understand the motivation for each of these different technologies, how they are different to each other, and why you would want to use them. I love that he's not afraid to jump and write code, as - when you do it just right - a few lines of code are much more illustrative than a picture or block of texts would do.

Totally recommended. If you want to learn Hadoop, buy a Hadoop book - or an R book if you want to go deeper in that topic. But if you want to understand the current big data universe, how the tools interrelate between each other, and go from data generation to storage to analysis to visualization - this is the book.
6 internautes sur 8 ont trouvé ce commentaire utile 
4.0 étoiles sur 5 Great "bird-perspective" on data 22 février 2014
Par Tommy Otzen - Publié sur Amazon.com
Format: Broché Achat vérifié
Great book for an overview on data, collecting of data, data tools and data files.

Wanting to learn whats up and down in the world of Big Data was accomplished by reading this book.

You'll get valuable understanding of when to use ex. JSON over CSV, with good explanation of why.

I recommend this book for people with little or no experience on how data can be stored, analyzed and visualized.
5 internautes sur 8 ont trouvé ce commentaire utile 
2.0 étoiles sur 5 In the end I have neither the impression I have a good overview of the tools available (at least 31 juillet 2014
Par J. A. Elkink - Publié sur Amazon.com
Format: Format Kindle Achat vérifié
This book provides an interesting overview of main technologies in data science, but strikes a slightly odd balance between technical and descriptive -- there are some brief code examples that can get you on the way or that give you an impression of the functionality of the particular tool, but it remains very superficial. In the end I have neither the impression I have a good overview of the tools available (at least, not beyond what I already had), nor do I know much in detail about each of them. Most items are explained in too simple language, using analogies where technical detail would have been more interesting. It's also slightly repetitive at times. I think the author has tried to please both more technically inclined and others at the same time, which hasn't really worked.

So, if you want a very quick overview of what data science is, this is an easy read and provides you just that, but if you want anything deeper out of it, I think this book is somewhat disappointing.
0 internautes sur 1 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 Five Stars 21 décembre 2014
Par SF Local - Publié sur Amazon.com
Format: Format Kindle Achat vérifié
very informative
Ces commentaires ont-ils été utiles ? Dites-le-nous

Rechercher des articles similaires par rubrique