EUR 56,46
  • Tous les prix incluent la TVA.
Il ne reste plus que 13 exemplaire(s) en stock (d'autres exemplaires sont en cours d'acheminement).
Expédié et vendu par Amazon. Emballage cadeau disponible.
Quantité :1
Information Theory, Infer... a été ajouté à votre Panier
Vous l'avez déjà ?
Repliez vers l'arrière Repliez vers l'avant
Ecoutez Lecture en cours... Interrompu   Vous écoutez un extrait de l'édition audio Audible
En savoir plus
Voir les 3 images

Information Theory, Inference and Learning Algorithms (Anglais) Relié – 25 septembre 2003

Voir les formats et éditions Masquer les autres formats et éditions
Prix Amazon
Neuf à partir de Occasion à partir de
"Veuillez réessayer"
EUR 56,46
EUR 51,81 EUR 56,79
"Veuillez réessayer"
EUR 144,85
Note: Cet article est éligible à la livraison en points de collecte. Détails
Récupérer votre colis où vous voulez quand vous voulez.
  • Choisissez parmi 17 000 points de collecte en France
  • Les membres du programme Amazon Premium bénéficient de livraison gratuites illimitées
Comment commander vers un point de collecte ?
  1. Trouvez votre point de collecte et ajoutez-le à votre carnet d’adresses
  2. Sélectionnez cette adresse lors de votre commande
Plus d’informations
click to open popover

Offres spéciales et liens associés

Produits fréquemment achetés ensemble

  • Information Theory, Inference and Learning Algorithms
  • +
  • Elements of Information Theory
Prix total: EUR 144,01
Acheter les articles sélectionnés ensemble

Descriptions du produit

Revue de presse

'This is an extraordinary and important book, generous with insight and rich with detail in statistics, information theory, and probabilistic modeling across a wide swathe of standard, creatively original, and delightfully quirky topics. David MacKay is an uncompromisingly lucid thinker, from whom students, faculty and practitioners all can learn.' Peter Dayan and Zoubin Ghahramani, Gatsby Computational Neuroscience Unit, University College, London

'This is primarily an excellent textbook in the areas of information theory, Bayesian inference and learning algorithms. Undergraduates and postgraduates students will find it extremely useful for gaining insight into these topics; however, the book also serves as a valuable reference for researchers in these areas. Both sets of readers should find the book enjoyable and highly useful.' David Saad, Aston University

'An utterly original book that shows the connections between such disparate fields as information theory and coding, inference, and statistical physics.' Dave Forney, Massachusetts Institute of Technology

'An instant classic, covering everything from Shannon's fundamental theorems to the postmodern theory of LDPC codes. You'll want two copies of this astonishing book, one for the office and one for the fireside at home.' Bob McEliece, California Institute of Technology

'… a quite remarkable work … the treatment is specially valuable because the author has made it completely up-to-date … this magnificent piece of work is valuable in introducing a new integrated viewpoint, and it is clearly an admirable basis for taught courses, as well as for self-study and reference. I am very glad to have it on my shelves.' Robotica

'With its breadth, accessibility and handsome design, this book should prove to be quite popular. Highly recommended as a primer for students with no background in coding theory, the set of chapters on error correcting codes are an excellent brief introduction to the elements of modern sparse graph codes: LDPC, turbo, repeat-accumulate and fountain codes are described clearly and succinctly.' IEEE Transactions on Information Theory

Présentation de l'éditeur

Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

Aucun appareil Kindle n'est requis. Téléchargez l'une des applis Kindle gratuites et commencez à lire les livres Kindle sur votre smartphone, tablette ou ordinateur.

  • Apple
  • Android
  • Windows Phone
  • Android

Pour obtenir l'appli gratuite, saisissez votre numéro de téléphone mobile.

Détails sur le produit

Quels sont les autres articles que les clients achètent après avoir regardé cet article?

Commentaires en ligne

Il n'y a pas encore de commentaires clients sur
5 étoiles
4 étoiles
3 étoiles
2 étoiles
1 étoile

Commentaires client les plus utiles sur (beta) HASH(0x9b18fc3c) étoiles sur 5 23 commentaires
66 internautes sur 68 ont trouvé ce commentaire utile 
HASH(0x9b46fe94) étoiles sur 5 Outstanding book, especially for statisticians 2 octobre 2007
Par Alexander C. Zorach - Publié sur
Format: Relié
I find it interesting that most of the people reviewing this book seem to be reviewing it as they would any other information theory textbook. Such a review, whether positive or critical, could not hope to give a complete picture of what this text actually is. There are many books on information theory, but what makes this book unique (and in my opinion what makes it so outstanding) is the way it integrates information theory with statistical inference. The book covers topics including coding theory, Bayesian inference, and neural networks, but it treats them all as different pieces of a unified puzzle, focusing more on the connections between these areas, and the philosophical implications of these connections, and less on delving into depth in one area or another.

This is a learning text, clearly meant to be read and understood. The presentation of topics is greatly expanded and includes much discussion, and although the book is dense, it is rarely concise. The exercises are absolutely essential to understanding the text. Although the author has made some effort to make certain chapters or topics independent, I think that this is one book for which it is best to more or less work straight through. For this reason and others, this book does not make a very good reference: occasionally nonstandard notation or terminology is used.

The biggest strength of this text, in my opinion, is on a philosophical level. It is my opinion, and in my opinion it is a great shame, that the vast majority of statistical theory and practice is highly arbitrary. This book will provide some tools to (at least in some cases) anchor your thinking to something less arbitrary. It's ironic that much of this is done within the Bayesian paradigm, something often viewed (and criticized) as being more arbitrary, not less so. But MacKay's way of thinking is highly compelling. This is a book that will not just teach you subjects and techniques, but will shape the way you think. It is one of the rare books that is able to teach how, why, and when certain techniques are applicable. It prepares one to "think outside the box".

I would recommend this book to anyone studying any of the topics covered by this book, including information theory, coding theory, statistical inference, or neural networks. This book is especially indispensable to a statistician, as there is no other book that I have found that covers information theory with an eye towards its application in statistical inference so well. This book is outstanding for self-study; it would also make a good textbook for a course, provided the course followed the development of the textbook very closely.
39 internautes sur 43 ont trouvé ce commentaire utile 
HASH(0x9b54d2ac) étoiles sur 5 Good value text on a spread of interesting and useful topics 19 février 2005
Par Iain - Publié sur
Format: Relié
I am a PhD student in computer science. Over the last year and a half this book has been invaluable (and parts of it a fun diversion).

For a course I help teach, the intoductions to probability theory and information theory save a lot of work. They are accessible to students with a variety of backgrounds (they understand them and can read them online). They also lead directly into interesting problems.

While I am not directly studying data compression or error correcting codes, I found these sections compelling. Incredibly clear exposition; exciting challenges. How can we ever be certain of our data after bouncing it across the world and storing it on error-prone media (things I do every day)? How can we do it without >60 hard-disks sitting in our computer? The mathematics uses very clear notation --- functions are sketched when introduced, theorems are presented alongside pictures and explanations of what's really going on.

I should note that a small number (roughly 4 or 5 out of 50) of the chapters on advanced topics are much more terse than the majority of the book. They might not be of interest to all readers, but if they are, they are probably more friendly than finding a journal paper on the same topic.

Most importantly for me, the book is a valuable reference for Bayesian methods, on which MacKay is an authority. Sections IV and V brought me up to speed with several advanced topics I need for my research.
28 internautes sur 30 ont trouvé ce commentaire utile 
HASH(0x9b298834) étoiles sur 5 A must have... 28 février 2005
Par Rich Turner - Publié sur
Format: Relié
Uniting information theory and inference in an interactive and entertaining way, this book has been a constant source of inspiration, intuition and insight for me. It is packed full of stuff - its contents appear to grow the more I look - but the layering of the material means the abundance of topics does not confuse.

This is _not_ just a book for the experts. However, you will need to think and interact when reading it. That is, after all, how you learn, and the book helps and guides you in this with many puzzles and problems.
17 internautes sur 18 ont trouvé ce commentaire utile 
HASH(0x9b29a480) étoiles sur 5 A Bayesian View: Excellent Topics, Exposition and Coverage 20 novembre 2008
Par Edward Donahue - Publié sur
Format: Relié
I am reviewing David MacKay's `Information Theory, Inference, and Learning Algorithms, but I haven't yet read completely. It will be years before I finish it, since it contains the material for several advanced undergraduate or graduate courses. However, it is already on my list of favorite texts and references. It is a book I will keep going back to time after time, but don't take my word for it. According to the back cover, Bob McEliece, the author of a 1977 classic on information theory recommends you buy two copies, one for the office and one for home. There are topics in this book I am aching to find the time to read, work through and learn.

It can be used as a text book, reference book or to fill in gaps in your knowledge of Information Theory and related material. MacKay outlines several courses for which it can be used including: his Cambridge Course on Information Theory, Pattern Recognition and Neural Networks, a Short Course on Information Theory, and a Course on Bayesian Inference and Machine Learning. As a reference it covers topics not easily accessible in books including: a variety of modern codes (hash codes, low density parity check codes, digital fountain codes, and many others), Bayesian inference techniques (maximum likelihood, LaPlace's method, variational methods and Monte Carlo methods). It has interesting applications such as information theory applied to genes and evolution and to machine learning.

It is well written, with good problems, some help to understand the theory, and others help to apply the theory. Many are worked as examples, and some are especially recommended. He works to keep your attention and interest, and knows how to do it. For example chapter titles include `Why Have Sex' and `Crosswords and Codebreaking'. His web site ( [...] ) is a wondrous collection of resource material including code supporting a variety of topics in the book. The book is available online to browse, either through Google books, or via a link from his web site, but you need to have it in hand, and spend time with it to truly appreciate it.
11 internautes sur 12 ont trouvé ce commentaire utile 
HASH(0x9b29a630) étoiles sur 5 One of the best textbooks I've ever read. 16 mars 2009
Par Bernie Madoff - Publié sur
Format: Relié
Maybe it's just that the topic is so fascinating a superb book such as this is unavoidable--I doubt it--regardless, MacKay has crafted a paragon of science textbooking. the formula: lead with an irresistible puzzle, let the reader have a go at it; unfold the solution intuitively, then finish by justifying it theoretically. the reader leaves understanding: -the applicatiuson, -the method of solution, -and the theory, why it exists and what it allows one to do
why aren't all textbooks like this??
if you're a self-learner, DO BUY THIS BOOK! if only so you can see the possibilities of what a good textbook can be!
Ces commentaires ont-ils été utiles ? Dites-le-nous


Souhaitez-vous compléter ou améliorer les informations sur ce produit ? Ou faire modifier les images?