• Tous les prix incluent la TVA.
En stock.
Expédié et vendu par Amazon. Emballage cadeau disponible.
+ EUR 2,99 (livraison en France métropolitaine)
D'occasion: Très bon | Détails
État: D'occasion: Très bon
Commentaire: Distribué à partir du Royaume-Uni dans les 24 heures. Second edition.
Vous l'avez déjà ?
Repliez vers l'arrière Repliez vers l'avant
Ecoutez Lecture en cours... Interrompu   Vous écoutez un extrait de l'édition audio Audible
En savoir plus
Voir les 3 images

NumPy Beginner's Guide - Second Edition (Anglais) Broché – 25 avril 2013

4,2 étoiles sur 5
5 étoiles
4 étoiles
3 étoiles
2 étoiles
1 étoile
4,2 étoiles sur 5 13 commentaires client

Voir les 2 formats et éditions Masquer les autres formats et éditions
Prix Amazon
Neuf à partir de Occasion à partir de
Format Kindle
"Veuillez réessayer"
"Veuillez réessayer"
EUR 36,91
EUR 36,17 EUR 28,62
Note: Cet article est éligible à la livraison en points de collecte. Détails
Récupérer votre colis où vous voulez quand vous voulez.
  • Choisissez parmi 17 000 points de collecte en France
  • Les membres du programme Amazon Premium bénéficient de livraison gratuites illimitées
Comment commander vers un point de collecte ?
  1. Trouvez votre point de collecte et ajoutez-le à votre carnet d’adresses
  2. Sélectionnez cette adresse lors de votre commande
Plus d’informations

Il y a une édition plus récente de cet article:

click to open popover

Offres spéciales et liens associés

Descriptions du produit

Présentation de l'éditeur

An action packed guide using real world examples of the easy to use, high performance, free open source NumPy mathematical library


  • Perform high performance calculations with clean and efficient NumPy code
  • Analyze large data sets with statistical functions
  • Execute complex linear algebra and mathematical computations

In Detail

NumPy is an extension to, and the fundamental package for scientific computing with Python. In today's world of science and technology, it is all about speed and flexibility. When it comes to scientific computing, NumPy is on the top of the list.

NumPy Beginner's Guide will teach you about NumPy, a leading scientific computing library. NumPy replaces a lot of the functionality of Matlab and Mathematica, but in contrast to those products, is free and open source.

Write readable, efficient, and fast code, which is as close to the language of mathematics as is currently possible with the cutting edge open source NumPy software library. Learn all the ins and outs of NumPy that requires you to know basic Python only. Save thousands of dollars on expensive software, while keeping all the flexibility and power of your favourite programming language.You will learn about installing and using NumPy and related concepts. At the end of the book we will explore some related scientific computing projects. This book will give you a solid foundation in NumPy arrays and universal functions. Through examples, you will also learn about plotting with Matplotlib and the related SciPy project. NumPy Beginner's Guide will help you be productive with NumPy and have you writing clean and fast code in no time at all.

What you will learn from this book

  • Install NumPy
  • NumPy arrays
  • Universal functions
  • NumPy matrices
  • NumPy modules
  • Plot with Matplotlib
  • Test NumPy code
  • Relation to SciPy


The book is written in beginner’s guide style with each aspect of NumPy demonstrated with real world examples and required screenshots.

Who this book is written for

If you are a programmer, scientist, or engineer who has basic Python knowledge and would like to be able to do numerical computations with Python, this book is for you. No prior knowledge of NumPy is required.

Biographie de l'auteur

Ivan Idris

Ivan Idris has an MSc in Experimental Physics. His graduation thesis had a strong emphasis on Applied Computer Science. After graduating, he worked for several companies as a Java Developer, Data warehouse Developer, and QA Analyst. His main professional interests are Business Intelligence, Big Data, and Cloud Computing. Ivan Idris enjoys writing clean, testable code and interesting technical articles. Ivan Idris is the author of NumPy 1.5 Beginner's Guide and NumPy Cookbook by Packt Publishing. You can find more information and a blog with a few NumPy examples at ivanidris.net.

Aucun appareil Kindle n'est requis. Téléchargez l'une des applis Kindle gratuites et commencez à lire les livres Kindle sur votre smartphone, tablette ou ordinateur.

  • Apple
  • Android
  • Windows Phone
  • Android

Pour obtenir l'appli gratuite, saisissez votre numéro de téléphone mobile.

Détails sur le produit

Commentaires en ligne

Il n'y a pas encore de commentaires clients sur Amazon.fr
5 étoiles
4 étoiles
3 étoiles
2 étoiles
1 étoile

Commentaires client les plus utiles sur Amazon.com (beta)

Amazon.com: 4.2 étoiles sur 5 13 commentaires
6 internautes sur 6 ont trouvé ce commentaire utile 
4.0 étoiles sur 5 5 stars for material, 3 for presentation 10 juillet 2013
Par Kelly Summerlin - Publié sur Amazon.com
Format: Format Kindle Achat vérifié
The material covered is pretty good considering the breadth of the NumPy library. I would have like more coverage of the NumPy record types. The only real problem I had with this book, I wasn't happy with the style of the material presented. The style tries to present a problem to solve with NumPy, then shows a segment of programming steps to solve the problem, and finally shows the completed code. I think I prefer the cookbook style of O'Reilly books better.

This style almost presents the solution twice once with a step by step, and then again with full code. It seems redundant.
0 internautes sur 2 ont trouvé ce commentaire utile 
4.0 étoiles sur 5 Four Stars 4 octobre 2014
Par Bradley J. Erickson - Publié sur Amazon.com
Format: Broché Achat vérifié
Nice coverage of the numpy library
0 internautes sur 2 ont trouvé ce commentaire utile 
4.0 étoiles sur 5 Four Stars 3 octobre 2014
Par Bayview - Publié sur Amazon.com
Format: Broché Achat vérifié
Happy with purchase.
16 internautes sur 16 ont trouvé ce commentaire utile 
4.0 étoiles sur 5 About "NumPy Beginner's Guide" (2nd Edition) 30 juin 2013
Par JGM - Publié sur Amazon.com
Format: Broché
When one is dealing with numerical methods, there are many good reasons to do so using free/open numerical tools ... But, whether you happen to be doing "real" work for a company or to be a PhD candidate, too often you are confronted with the dilemma of investing your time in learning alternative and more productive ways of doing your work (i.e. the promising combination python/NumPy) and actually having your work done by the due date.

As a PhD student myself, article reviewing, code debugging, data analysis and other obligations and deadlines have been so far the reason not to get the grips with NumPy ... until I found Mr. Idris's "NumPy - Beginner's guide"!

Personally, I find the most remarkable feature of the book to be the good compromise the author has found between:
* the amount and relevance of the information offered,
* the clarity of the exposition and
* the immediate applicability of the information provided.

As a first remark, the book covers many of the most recurrent techniques I need to use during my research activity, and thus the book can very well serve as a reference. However, do not mistake the book as yet another "How To" guide, or a simple "Cook-Book": far from that, you see an evident and conscious effort to lead the reader through different capabilities of NumPy in a bottom-up, constructive manner: this is a book you can actually learn from.

Another highlight of the book is the early focus on data processing from text files. Instead of presenting this feature in an arcane manner detached from other features (as is often the case in many programming guides), the author presents briefly but in enough detail the text-file-processing capabilities of NumPy intertwined with several statistical analysis tools.

Of course, there is a space devoted to most common procedures for linear algebra, signal processing, efficient sorting algorithms, ...

Yet another success of the book concerns the graphical representation of information; the book devotes a full chapter to matplotlib and to explain how to produce the most common graphs needed to effectively communicate one's work . This does not prevent the author to use matplotlib if needed in previous chapters, offering in any of such occasions at least the minimal explanation of what is being done.

To conclude, I believe this book can help users/developers of numerical methods to become independent and proficient users of NumPy: a reader minimally familiar with the python syntax will be able, in very short time, to port her/his existing numerical tools into NumPy, thus acquiring the experience needed to devise new, more efficient tools taking advantage of the advantages of the python/NumPy duo.
10 internautes sur 10 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 Beginners Guide and Handy Reference 3 juillet 2013
Par ReaddyEddy - Publié sur Amazon.com
Format: Broché
Who is it for:
This is an excellent book for the Python programmer who wants to extend their knowledge into mathematical programming and those with a mathematical or engineering background who want to leverage open source alternatives to commercial tools by using the NumPy with Python.

Installation and other packages:
Installation on the main platforms and the relationship between NumPy and SciPy, and using the library with Matplotlib and other Python modules is well covered.

What's covered:
The coverage is goes from creating vectors and multi-dimensional matrices through calculating Eigenvectors, the FFT, complex numbers, polynomial fitting and many others.

Example Code:
The examples I've followed are well thought through and illustrate the use the relevant parts of the NumPy API required in a clear and concise manner. An increasing amount of mathematical background is needed and for a beginner the book should be read in conjunction with a text book covering the relevant material.

I would heartily recommend the book both as tool for learning and as a working reference for the NumPy library and wish it had been available when I was going up the learning curve.
Ces commentaires ont-ils été utiles ? Dites-le-nous

Où en sont vos commandes ?

Livraison et retours

Besoin d'aide ?