Aucun appareil Kindle n'est requis. Téléchargez l'une des applis Kindle gratuites et commencez à lire les livres Kindle sur votre smartphone, tablette ou ordinateur.

  • Apple
  • Android
  • Windows Phone
  • Android

Pour obtenir l'appli gratuite, saisissez votre numéro de téléphone mobile.

Prix Kindle : EUR 10,57

EUR 6,53 (38%)

TVA incluse

Ces promotions seront appliquées à cet article :

Certaines promotions sont cumulables avec d'autres offres promotionnelles, d'autres non. Pour en savoir plus, veuillez vous référer aux conditions générales de ces promotions.

Envoyer sur votre Kindle ou un autre appareil

Envoyer sur votre Kindle ou un autre appareil

Our Own Devices: How Technology Remakes Humanity par [Tenner, Edward]
Publicité sur l'appli Kindle

Our Own Devices: How Technology Remakes Humanity Format Kindle

Voir les formats et éditions Masquer les autres formats et éditions
Prix Amazon
Neuf à partir de Occasion à partir de
Format Kindle
"Veuillez réessayer"
EUR 10,57

Descriptions du produit


Chapter One

Technology, Technique, and the Body

IN A GARY LARSON cartoon, a number of dogs are tinkering with building hardware at laboratory workbenches. The caption explains that they are striving to improve canine life by mastering the Doorknob Principle. What makes this funny is partly the idea of pooch scientists standing on their hind legs, manipulating screwdrivers and even microscopes. It recalls the long-discarded notion that we humans are the only tool-using animals. It points indirectly to the unique versatility of the human hand, with its range of grips, and the relative specialization of other creatures' paws and claws.

There is something even stranger than Larson's image, though. Other animals have a surprising ability to manipulate human technology. Not all understand what people do with things, but they develop ways to work with human-made objects, and they transmit this knowledge socially. At the dawn of industrialization, the rats of early-nineteenth-century London, with no direct auditory or visual cues, had long known that water flowed through the lead pipes servicing houses. When sufficiently thirsty, they gnawed right through them. Unfortunately, by the 1830s the pipes sometimes contained gas; the holes left by the disappointed rodents added to the risk of explosions. (Rats also loved the wax covering early matches, brought them back to their dens, and ignited the phosphorus with their teeth, causing still more fires.)

Bears in Yosemite National Park have learned to twist open screw-top jars of peanut butter, to break into food lockers with a combination of paw and snout, and to raid Dumpsters through supposedly protective slots. Bears cooperate to defeat other human technology; sow bears appear to send cubs into branches to dislodge carefully cached food, and young bears learn from observation how to break open automobile doors and penetrate the flimsy barrier separating the backseat from the food the owners thought they were protecting in the trunk. According to park rangers, who call the practice clouting, bears recognize specific brands and models, for example Honda and Toyota sedans, that are most vulnerable to attack, and use similar techniques on each model. When a particular model and color yield a rich cache of food, bears begin to attack similar vehicles every night. Mother bears show cubs how to pry open rear side doors by bending the door frame with their claws until it becomes a platform for reaching the backseat and trunk partition. Bears also brace themselves against neighboring cars to break the windows of vans more readily.

Zoo officials "never use the word can't and orangutan in the same sentence," according to the comparative psychologist Benjamin Beck, a specialist in animal survival skills. A young orangutan in the San Diego Zoo became famous for unbolting the screening of his crib, removing the wires, and moving through the zoo nursery, unscrewing lightbulbs. According to Beck, an orangutan, unlike other great apes, understands what a tool like a screwdriver means in the human world and given the opportunity could use it to take its cage apart and escape. Other orangutans have learned to distinguish the faint sounds made by electrified barrier systems and to escape when they detect that the power is off.

It should not be surprising, then, that dogs also learn the Doorknob Principle. An innocent resident of Takoma Park, Maryland, was allegedly mauled by a Prince George's County police dog in her own bed after it was sent in to look for a burglar in her basement apartment. It had gained access by turning a doorknob, which the woman has since replaced by a latch. Bizarre as these anecdotes appear, they make an important point. Those who create things, whether doorknobs or gas pipes, can only begin to imagine how they will be used. If we define technology as a modification of the environment, then we must recognize the complementary principle of technique: how that modification is used in performance. New objects change behavior, but not always as inventors and manufacturers imagine. And changes in behavior of people, as of bears and dogs, inspire new hardware, which in turn engenders more innovations.


In many European languages the same term-la technique; die Technik-describes both things and practices. One of the most incisive and influential critics of technology, Jacques Ellul, argued powerfully that modern humanity is enmeshed in such omnipresent, interlocking technological institutions that technology and technique are inseparable. Ellul begins his most important work, The Technological Society, by insisting, against Lewis Mumford, that the machine is only a result of technique, not its source. Mumford established historical periods based on energy-hydraulic, coal, electrical; Ellul sought to understand the spirit behind the power sources and machinery. For him, technology was the product of the ancient Near East; in Western antiquity and medieval Christianity, it was always subordinated to other principles. Even the Renaissance and the seventeenth century pursued humanistic universality rather than technical proficiency; many supposedly practical books of this period lose the modern reader in digression and speculation. The universal application of technique began only with the eighteenth century and the French Revolution. Mechanization was only one consequence of "systematization, unification, and clarification," equally reflected in the suppression of customary law by the Napoleonic Code. History and philosophy as we know them emerged as intellectual techniques. In fact, Ellul argues, industrialization followed rather than preceded these intellectual and cultural transformations. With the rapid industrial development of the nineteenth century-which Ellul does not attempt to explain-came a new relationship of technique to society: "a reality in itself, self-sufficient, with its own laws and determinations." Political control of technique is an illusion. It is irreversible, "beyond good and evil," not merely morally neutral but "the judge of what is moral, the creator of a new morality" and thus of "a new civilization." Humanity has become "a slug in a slot machine," setting it in motion without controlling its outcome.

Ellul's arguments are trenchant, brilliantly argued, and often persuasively illustrated. His focus on mental processes and habits as the foundations of technology is especially apt. And Ellul probably would agree that other organisms, including bears and dogs, become subject to the same technological regime. But there is strong evidence for the power of technique well before the revolutionary era. In fact, for better or worse, the dominion of technique is an ancient one. For Ellul, the Greeks simply despised technique and exalted pure theory. He cites Archimedes' destruction of the models that he used to construct his theories, once he had demonstrated his proofs geometrically. He also suggests that Greek ideals of harmony and moderation held back the development of technique. But there is no opposition between aesthetic ideals and the development of techniques. Experience and skill are hardly neglected in the Hippocratic writings in favor of abstract thought.

Ellul also underestimated the power, even "autonomy" in his terms, of military technology before the eighteenth century. Swordsmanship and other martial arts were cultivated and transmitted by generations of medieval and Renaissance masters. But only in early modern Europe did the distinction between technology and technique become apparent. Between 1594 and 1607 Maurice of Nassau, Prince of Orange, showed how technique could transform technology. Matchlock muskets were heavy and dangerous. Soldiers had to hold their weapon in one hand and a lighted fuse in the other. While some hunting weapons already had spiral grooves in their barrels for greater accuracy, this delicate rifling needed more careful loading and maintenance than rough and dirty military field conditions could afford. Thus the military musket was inaccurate as well as awkward to handle. Maurice's genius was to see that organization and synchronized motion could make the crude musket an effective weapon. Inspired by an idea of his cousin William Louis, he assigned another cousin, Maurice's adjutant Johann, to break down the cycle of preparing, loading, aiming, and firing muskets into discrete steps. Johann of Nassau had a series of forty-three plates engraved, each illustrating one stage. It was no longer enough for drillmasters to teach the operation of the musket. Soldiers now had to be able to march forward, rank on rank, as they prepared the weapons for firing when they advanced to the front rank, then countermarch to repeat the process. Only with precision and strict discipline could they avoid serious injury to themselves or their comrades. But once the process-the technique-was mastered, the troops could lay down repeated, formidable volleys. An intense field of simultaneous fire could be effective, even with many shots going wide of the mark. Maurice and Johann's manual, Weapon Handling (1607), with its elegant illustrations by Jacob de Gheyn, transformed battle throughout Europe, especially through the victories of Gustavus Adolphus of Sweden two decades later. The press was a technology, and the printer's art a technique, that accelerated the diffusion of countless others.

Here was technological synchronization three hundred years before Henry Ford. Some readers will insist that the musket itself, as a technology, somehow dictated the technique of drill. Certainly, battlefield experience determines which innovations spread and which are abandoned.

But techniques do not create themselves, and neither operators nor their supervisors initially understand the full possibilities of devices. Ellul wrote in the shadow of a modernism that still sought a single best way to do everything, and for which (as the architectural critic David Heathcote recently remarked of the British official-planning mentality of the 1960s) "design is the search for the Platonic ideal and . . . variety is symptomatic of an unsolved problem." Ellul was right to underscore the constraints of technique, but wrong to deny its creative and improvisational side. In fact the two complement each other. Just when a technique seems to have proved itself inevitable and universal, an individual may develop and spread an alternative method. Organizations and professional groups codify best practice. Gifted individuals from time to time challenge the textbooks, often failing but sometimes revising them.


Ellul, like most analysts of technology, believed in a radical discontinuity between the industrial world and nonindustrial societies. An older French contemporary, the anthropologist Marcel Mauss, illuminated a side of technique that Ellul thought was too restrictive and unrelated to modern societies: the role of physical habits, which Mauss called body techniques. Ellul was correct in arguing for a concept of technique that included mental and social practices, but he ignored how important simple body techniques can be even in complex societies.

Mauss introduced the idea of body technique almost casually, in an article in a French psychology journal published in 1934. He identified a set of human practices as "effective" and "traditional," and at the same time "mechanical, physical, or physico-chemical." These were the ways people learned to do things with their bodies. These patterns of motion were

not haphazard; they were produced and inculcated by an entire society. They formed a framework of conduct. He coined the word "habitus" for these socially produced behaviors, which varied systematically "between societies, educations, proprieties and fashions, prestiges." Prestige was, for Mauss, essential to human body technique. Children imitate the actions of their elders, especially those with formal authority. The learning of body techniques is at once social, psychological, and biological. Mauss gave examples from the dances and rituals of the native peoples of Australia and New Zealand. But some of his most interesting cases are taken from the early-twentieth-century history of sports, and from his own experience.

Mauss remembered learning to swim first, then to dive. He also recalled being taught to dive with eyes shut, opening them only after immersion. By the 1930s, when his study of body techniques was published, children were expected to accustom themselves as early as possible to keeping their eyes open in the water, controlling the instinctive tendency to shut them. (The aversion to opening one's eyes in the water is now considered to be learned; swimming authorities encourage parents to begin instruction in infancy, when moving in water is still innately delightful.) Swimming, like other techniques, was an apprenticeship, but not a static one. Mauss's generation had learned to swim the breaststroke, with the head above water; by the 1930s, variations of the crawl had prevailed. No longer did swimmers swallow water and spit it as though they were "a kind of steamboat." Yet Mauss acknowledged that he still could not swim otherwise.

Walking was subject to more subtle but still discernible techniques. In the Great War, Mauss recalled, the Western Allies moved differently. The Worcester Regiment, as a token of its valor fighting beside the French infantry in the Battle of the Aisne (he probably meant that of 1914), received special permission to be accompanied by a band of French buglers and drummers. The desired panache failed. For almost half a year, "the regiment had preserved its English march but had set it to a French rhythm. . . . When they tried to march in step, the music would be out of step, with the result that the Worcester Regiment was forced to give up its French buglers." And as recently as World War II, an American observer found British troops "looser-jointed than we are, with freer knee action," and French soldiers with "a long loping swing that seems to use the shoulders to push ahead with." Were these stylized expressions of each nation's civilian steps or the choreography of long-forgotten sergeant-majors, enshrined in drill manuals?

Of course soldiers are drilled by noncommissioned officers who build morale partly by teaching these distinctive motions. Their exercises produce what William H. McNeill, in his study of dance and drill, has called "muscular bonding," the solidarity of rhythmic synchronization. Both national armies and civilians march to different drummers. Mauss began to notice that American and French women also walked differently, and that even in French society, upbringing influenced gait noticeably. Girls raised in convents, for example, walked with fists closed, and Mauss recalled his own third-form teacher "shouting at me: 'Idiot! why do you walk around the whole time with your hands flapping wide open?' " Mauss believed that many of these differences arose from physical traits. The height of Englishmen, as well as the distinctive gait they had learned from their drillmasters, made it impossible to follow the French military band. Even the goose step had a biological explanation, the German army's way of achieving the greatest possible extension of the (long) German leg, as distinct from the short, knock-kneed French limb.

Mauss was probably exaggerating the role of physical differences. Surely all European conscript armies of World War I included a significant range of heights and body types. And the goose step, officially the parade step, is only an exaggerated form of the Prussian marching style called the Gleichschritt developed in the early eighteenth century. Troops were taught to swing their legs with stiffened knees not only to build morale and cohesion but to produce an ultra-erect posture signifying and building discipline.

Revue de presse

“An intellectual thrill ride. . . . [A] memorable mosaic, a big picture that illustrates how human progress is half a matter of striding and half of stumbling. . . . Illuminating reading.” —The New York Times Book Review

"In this stellar fusion of how we design and use technology, and how technology in turn transforms us, the simple shoestring is a . . . path to understanding everything that matters. . . . Tenner brings both scholarly precision and droll humor to his topics."
ThePhiladelphia Inquirer

“This quirky romp . . . explores how common objects redefine us as fast as we redesign them. . . . Tenner offers many profound insights.” —Wired

“Accessible, elegant. . . . Tenner covers a remarkable broad canvas. . . . He has an eye for the odd detail and the little-known fact. . . [and] will take you to some fascinating places.” —Boston Review

Détails sur le produit

  • Format : Format Kindle
  • Taille du fichier : 1730 KB
  • Nombre de pages de l'édition imprimée : 336 pages
  • Editeur : Vintage (22 août 2009)
  • Vendu par : Amazon Media EU S.à r.l.
  • Langue : Anglais
  • ASIN: B002MHOD20
  • Synthèse vocale : Activée
  • X-Ray :
  • Word Wise: Non activé
  • Composition améliorée: Activé
  • Moyenne des commentaires client : Soyez la première personne à écrire un commentaire sur cet article
  • Classement des meilleures ventes d'Amazon: n°797.623 dans la Boutique Kindle (Voir le Top 100 dans la Boutique Kindle)
  •  Voulez-vous faire un commentaire sur des images ou nous signaler un prix inférieur ?

click to open popover

Commentaires en ligne

Il n'y a pas encore de commentaires clients sur
5 étoiles
4 étoiles
3 étoiles
2 étoiles
1 étoile

Commentaires client les plus utiles sur (beta) 3.0 étoiles sur 5 3 commentaires
16 internautes sur 18 ont trouvé ce commentaire utile 
5.0 étoiles sur 5 How Technology Insidiously Transforms Us 26 novembre 2005
Par Robert I. Hedges - Publié sur
Format: Broché
"Why Things Bite Back" stands as one of my favorite books, and is definitely the best single volume available on the unintended consequences of technology. I was, of course, eager to read Edward Tenner's "Our Own Devices," a volume more focused on the historical adaptations of a select few technologies and man's co-evolution with them.

Tenner intentionally selected mundane technologies that get no more than a passing thought on a daily basis, and in several cases not only tracks historical adaptations of specific inventions and technologies (the history of the baby bottle, or eyeglasses, for instance), but also contrasts the diametrically opposed ends of the technological spectrum as it applies to what are similar design constructs (for instance posture chairs versus reclining chairs, and musical keyboards versus text keyboards.)

The scope of Tenner's research is astounding, and makes seemingly mundane items interesting. Particularly strong are the chapters on the zori (a sandal), and eyeglasses. In the chapter on zoris, for example, Tenner documents the work of a Liberian craftsman, Saarenald T. S. Yaawaisan, who recycled old sandals into toy helicopters until he had acquired all the used sandals in Monrovia, at which point he began purchasing new sandals to make into toys. The story goes on to explain the subsequent problems with Monrovian sandal recycling vis-a-vis the release of dioxin into the environment. This illustrates the fanciful research Tenner put in to make this an eminently readable book.

My favorite chapter, and one that will strike a chord with many readers is on the history of eyeglasses. Eyeglasses have a much longer and complex history than I had expected, and I found his insights correlating the rise of literacy with the rise in myopia interesting. Particularly interesting in the chapter are references to the visual range requirements needed for more primitive hunter-gatherers versus modern civilized man. Tenner correctly credits the work of behavioral biologist Jakob von Uexkull, and discusses his concepts of visual perception ("merkwelt") and related theories with great aplomb. Also discussed in this chapter is the role the Catholic church had in promoting the perception of eyeglasses (even during the Inquisition), and the role of aristocratic Europe in shaping public perception of correctable lenses. Specific technologies and manufacturing techniques (mainly European) are discussed, including those of famed presbyope (and cryptologist) Duke August the Younger of Brunswick-Wolfenbuttel, who promoted fine craftsmanship of lenses over cheaply made products from Florence.

This book is extremely well researched, and is generally very absorbing for those interested in the history and implications of technology. Even though it is a bit longwinded at times, I give it five stars for eloquently describing the co-evolution of man and machine.
12 internautes sur 21 ont trouvé ce commentaire utile 
3.0 étoiles sur 5 Interesting facts - writing too academic 8 juin 2005
Par JR - Publié sur
Format: Broché
The book finished more interesting than it began, but overall the book was a disappointment. Many of the topics were interesting - shoes, chairs, music and text keyboards, eye glasses - and occasionally the writing was interesting.

Mr. Tenner's style was more academic - many facts and dates and names - but he rarely made any of the people or situations come alive. If he followed that path, the book would have been far more interesting and entertaining. For me, what makes history is not the the facts and figures, but the people and the color of the situation.

After reading the book I have many interesting tidbits of information, but unless someone is HIGHLY interested in the history of chairs or one of the topics in the table of contents, I can not recommend they pick up this book. I wish I could.
12 internautes sur 22 ont trouvé ce commentaire utile 
1.0 étoiles sur 5 All Research, No Insight 17 août 2006
Par A. Hasan - Publié sur
Format: Broché
Tenner gives loads of citations and research but doesnt even have a thesis. He rambles off example of interactions between humanity and its technology. His writing style is poor and will lose you in his trail of thought. He is very bad at describing what he is thinking. He never actually "says" anything. All he does is present research.

He very rarely, if ever, derives a conclusion from what he brings up. He should not be called a philosopher of everyday technology, because at least in this book, he never actually does any thinking.

Very very poor. I would not recommend it at all.
Ces commentaires ont-ils été utiles ? Dites-le-nous